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Abstract

This paper studies the sources of agglomeration economies in cities. We begin
by incorporating within and cross-industry spillovers into a dynamic spatial
equilibrium model in order to obtain a panel data estimating equation. This
gives us a framework for measuring a rich set of agglomeration forces while
controlling for a variety of potentially confounding effects. We apply this es-
timation strategy to detailed new data describing the industry composition of
31 English cities from 1851-1911. Our results show that industries grew more
rapidly in cities where they had more local suppliers or other occupationally-
similar industries. We find no evidence of dynamic within-industry effects, i.e.,
industries generally did not grow more rapidly in cities in which they were al-
ready large. Once we control for these agglomeration forces, we find evidence
of strong dynamic congestion forces related to city size. We also show how to
construct estimates of the combined strength of the many agglomeration forces
in our model. These results suggest a lower bound estimate of the strength of
agglomeration forces equivalent to a city-size divergence rate of 1.6-2.3% per
decade. JEL Codes: R1, N93, O3 Keywords: Agglomeration, City Growth
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1 Introduction

What are the key factors driving city growth over the long term? One of the leading

answers to this question, dating back to Marshall (1890), is that firms may benefit

from proximity to one another through agglomeration economies. While compelling,

this explanation raises further questions about the nature of these agglomeration

economies. Do firms primarily benefit from proximity to other firms in the same

industry, or, as suggested by Jacobs (1969), is proximity to other related industries

more important? How do these forces vary across industries? What role does city

size play in industry growth? How can we separate all of these features from the fixed

locational advantages of cities? These are important questions for our understanding

of cities. Their answers also have implications for the design of place-based policies,

which can top $80 billion per year in the U.S. and are also widely used in other

countries.1

Not surprisingly, there is a large body of existing research exploring the nature

of agglomeration economies. This study builds on two important strands of this

literature.2 One approach uses long-differences in the growth of city-industries over

time and relates them to rough measures of initial conditions in a city, such as an

industry’s share of city employment or the Herfindahl index over major city-industries

(Glaeser et al. (1992), Henderson et al. (1995)). The main concern with this line of

research is that it ignores much of the richness and heterogeneity that are likely to

characterize agglomeration economies. A more recent approach allows for a richer set

of inter-industry relationships using connection matrices based on input-output flows,

labor force similarity, or technology spillovers. These connections are then compared

to a cross-section of industry locations (Rosenthal & Strange (2001), Ellison et al.

(2010), Faggio et al. (Forthcoming)).3 A limitation of this type of static exercise

1The New York Times has constructed a database of incentives awarded by cities, coun-
ties and states to attract companies to locate in their area. The database is available at
http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html.

2There are several other strands of the agglomeration literature which are less directly related
to this paper. Other alternative approaches use individual-level wage data (Glaeser & Mare (2001),
Combes et al. (2008), Combes et al. (2011)) or firm-level data (Dumais et al. (2002), Rosenthal &
Strange (2003), Combes et al. (2012)) to investigate the effects of city size. See Rosenthal & Strange
(2004) and Combes & Gobillon (2015) for reviews of this literature.

3These studies are part of a broader literature looking at the impact of inter-industry connections,
particularly through input-output linkages, that includes work by Amiti & Cameron (2007) and
Lopez & Sudekum (2009).
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is that it is more difficult to control for locational fundamentals in cross-sectional

regressions.

Our approach builds on these previous studies, but also seeks to address some

of the remaining issues facing the literature. Specifically, this study contributes

to the existing literature in five ways. First, while this is primarily an empirical

paper, we begin by introducing a new dynamic spatial equilibrium model of city-

industry growth. This model incorporates a rich set of within- and cross-industry

spillover effects, which allows us to ground our study of these agglomeration forces

in a theoretically-consistent framework. Recent work has highlighted the need for

theoretical foundations in this literature.4

Second, motivated by the theory, we introduce a panel-data econometric approach

for estimating the magnitude of agglomeration forces.5 The key feature of our ap-

proach is that we are able to estimate the importance of dynamic agglomeration

forces related to industry scale, cross-industry connections, and city-size in a uni-

fied framework, while dealing with fixed locational fundamentals and time-varying

industry-specific shocks. Previous research has examined these elements separately,

but we are not aware of existing work that studies all of these effects in a unified

way. In addition, the use of panel data offers some well-known advantages relative

to the cross-sectional or long-difference methods used in most existing work. How-

ever, applying this approach to study agglomeration economies requires overcoming

challenges related to identification and correlated errors. Our study makes progress

in this direction, allowing us to address some of the identification concerns present in

previous work. The approach that we develop can potentially be applied in a wide

range of settings in which consistent panels of city-industry employment data can be

constructed.

Third, to implement our approach, we construct a rich dataset describing the

evolution of city-industry employment over six decades. The availability of detailed

long-run city-industry data has been a major impediment to previous work on ag-

glomeration economies. The database constructed in this study helps address this

4See the handbook chapter by Combes & Gobillon (2015).
5Our panel data approach builds on previous work by Henderson (1997) and Dumais et al. (1997).

See also Combes (2000) and Dekle (2002). A panel data approach is also used in a recent working
paper by Lee (2015) which uses data on U.S. manufacturing industries from 1880-1990 to study
static agglomeration forces.
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deficiency.6 These new data, which we digitized from original sources, cover 31 of the

largest English cities (based on 1851 population) for the period 1851-1911. This em-

pirical setting offers several important advantages. One advantage is the very limited

level of government regulation and interference in the British economy during this pe-

riod due to the strong free-market ideology that dominated British policymaking and

the small size of the central government.7 A second important advantage is that we

are able to study agglomeration using consistent data over many decades. Studying

agglomeration over a long time period is desirable because the time needed to build

new housing, factories, and infrastructure means that it may take years for cities to

respond to changes in local productivity levels. Our data are also quite detailed; they

come from a full census and cover nearly the entire private sector economy, including

manufacturing, transportation, retail, and services. A third advantage is that we are

able to study a long-established urban system. This contrasts with the U.S., where

the open western frontier meant that the U.S. city system was in transition until the

middle of the 20th century.8 Our setting was also characterized by a relatively open

economy with high levels of migration into and between cities.9

Fourth, we provide new results on the strength of different types of agglomeration

and congestion forces for one empirical setting. We find that (1) cross-industry effects

were important, and occurred largely through the presence of local suppliers and oc-

cupationally similar labor pools, (2) the net effect of within-industry agglomeration

forces was generally negative, and (3) city size had a clear negative relationship to

city growth. The presence of local buyers appears to have had little positive influence

on city-industry growth. We provide a variety of tests examining the robustness of

6Recently, other databases of this type have been developed using data from the U.S. County
Business Patterns by Duranton et al. (2014) and from the U.S. Census of Manufacturers by Lee
(2015) and others.

7This contrasts with modern settings, where the list of confounding factors includes place-based
government policies, local land-use regulations such as zoning, environmental policies that vary
across locations, local tax incentives, variation in the local burden of national taxation, as well as
many other types of regulation. These factors can also affect city growth, making it more difficult
to identify and quantify the role of agglomeration forces. To cite some examples, Kline & Moretti
(2013) describe the impact of place-based government policies in the U.S. The role of local land
use regulations is highlighted by Gyourko et al. (2008). Local environmental policies are studied
by Henderson (1996) and Chay & Greenstone (2005), among others. Greenstone & Moretti (2003)
describe the impact of local tax incentives, while Albouy (2009) describes how federal tax incentives
distort urban growth.

8See Desmet & Rappaport (Forthcoming). In contrast, Dittmar (2011) finds that Zipf’s Law
emerged in European cities between 1500 and 1800, well before the beginning of our study period.

9See, e.g., Baines (1994) and Long & Ferrie (2004).
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these results. For example, we show that our main results are robust to dropping

particular cities or particular industries. They are also robust to using an alternative

set of matrices measuring cross-industry connections, alternative functional forms for

modeling spillovers, or alternative industry definitions. We also show that incorpo-

rating cross-city effects, such as market potential or cross-city industry spillovers, has

little impact on our results.

Fifth, we introduce a novel approach for measuring the combined strength of the

many cross-industry agglomeration forces represented in our model. This is valuable

because it provides a convenient way to assess the aggregate strength of these effects

and may be useful for studying how these effects vary in different circumstances. Our

results suggest that a lower-bound estimate of the agglomeration forces captured by

our empirical model are equivalent to a decadal city-size divergence rate of 1.6-2.3%.

To our knowledge this is the first paper to show how to measure the combined strength

of these many cross-industry connections.

It is important to understand at the outset that the goal of this paper is to assess

the role of agglomeration economies in driving city employment growth in different

industries, and thereby contributing to overall city growth. Because our interest is in

city growth, our analysis focuses specifically on employment as the outcome variable

of interest. This is the natural object for our analysis, and one of the few types

of data that can be observed at a local level, for many locations, over long time

periods.10 While the contribution of agglomeration economies to employment growth

is generated through improved productivity, there is not necessarily a one-to-one

mapping between productivity and employment growth. For example, under certain

circumstances productivity improvements may reduce employment growth. Thus, our

results should not be interpreted as providing a full description of the productivity

effects of agglomeration economies.

It is also important to note that this study focuses on dynamic agglomeration

economies, i.e., the influence of the current level of economic activity on future growth.

This approach is motivated by the endogenous growth literature, and in particular

the work of Lucas (1988), who emphasized the important role that localized learning

in cities is likely to play in generating sustained economic growth. In some sense our

exercise can be thought of as a step towards identifying the patterns that characterize

10Other types of data, such as wages and rents, are more difficult to obtain in a consistent way at
the local level over long periods.
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endogenous growth at the urban level. This approach contrasts with work studying

static agglomeration effects, where the level of employment or output in one sector

influences the level in another sector. While static agglomeration effects are worthy

of study, ultimately they cannot provide a theory of sustained urban growth.11

This paper analyzes agglomeration patterns across sectors spanning the entire

private-sector economy in all of the largest urban centers in England for a period of

sixty years. This broad approach allows us to estimate general patterns and to assess

their importance for long-run city development. An alternative strand of work on

agglomeration economies focuses on overcoming identification issues by comparing

outcomes in similar locations, where some locations receive a plausibly exogenous

shock to the level of local economic activity (e.g., Greenstone et al. (2010) and Kline

& Moretti (2013)). This approach has the advantage of more cleanly identifying the

causal impact of changes in local economic activity, but it may also be less gener-

alizable and more difficult to apply to policy analysis. Thus, we view our broader

approach, which follows the work of Glaeser et al. (1992), Henderson et al. (1995)),

and more recently Ellison et al. (2010), as complementary to studies that improve

identification by focusing on specific shocks to local economic activity.

The next section presents our theoretical framework while the empirical setting

is discussed in Section 3. Section 4 describes the data. In Section 5 we conduct

a preliminary analysis that applies existing methodologies to our data. We then

introduce our preferred empirical approach in Section 6. Section 7 presents the main

results, while Section 8 examines the impact of city size and shows how this can be

used to calculate the aggregate strength of the agglomeration forces in our model.

Section 9 concludes.

2 Theory

While this paper is primarily empirical, a theoretical model is useful in disciplining the

empirical specification. Grounding our analysis in theory can also help us interpret

11Some discussion of static vs. dynamic agglomeration forces is provided in Combes & Gobillon
(2015). Lee (2015) provides a recent example of a study focusing on static agglomeration forces. He
finds that static localized inter-industry spillovers were small and declining in the U.S. across the
20th century. This suggests that static agglomeration forces are unlikely to be behind the growth of
cities during this period.
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the results while being transparent about potential concerns.

The model is dynamic in discrete time. The dynamics of the model are driven by

spillovers within and across industries which depend on industry employment and a

matrix of parameters reflecting the extent to which any industry benefits from learning

generated by employment in other industries (i.e., learning-by-doing spillovers).12

These dynamic effects are external to firms, so they will not influence the static

allocation of economic activity across space that is obtained given a distribution of

technology levels. Thus, we can begin by solving the allocation of employment across

space in any particular period. We then consider how the allocation in one period

affects the evolution of technology and thus, the allocation of employment in the next

period. The benefit of such a simple dynamic system is that it allows the model to

incorporate a rich pattern of inter-industry connections.

The theory focuses on localized spillovers that affect industry technology and

thereby influence industry growth rates. In this respect it is related to the endogenous

growth literature, particularly Romer (1986) and Lucas (1988). This is obviously not

the only potential agglomeration force that may lie behind our results; alternative

models may yield an estimation equation that matches the one we apply. However,

because we are interested in dynamic agglomeration, focusing on technology growth

is the natural starting point.

As is standard in urban theories, we assume that goods are freely traded across

locations and workers are free to move between cities. To keep things simple, our

baseline model omits some additional features, such as savings and capital investment,

or intermediate inputs, that one might want to consider. In the Appendix, we explore

the impact of adding capital or intermediate goods.13

12We have also explored models where technological progress is based on R&D effort exerted
by firms and the new technologies generated through R&D have spillover benefits for other local
industries. Models of this type can generate the same basic estimating equation that we obtain
from our learning-by-doing model, but to keep the theory succinct we focus only on the simpler
learning-by-doing spillover model here.

13The inclusion of these elements does not change the basic estimating equation that we obtain
as long as we maintain the assumption of free mobility across locations, though it can change the
interpretation of the parameter estimates.
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2.1 Allocation within a static period

We begin by describing how the model allocates population and economic activity

across geographic space within a static period, taking technology levels as given. The

economy is composed of many cities indexed by c = {1, ...C} and many industries

indexed by i = {1, ...I}. Each industry produces one type of final good so final goods

are also indexed by i.

Individuals are identical and consume an index of final goods given by Dt. The

corresponding price index is Pt. These indices take a CES form,

Dt =

(∑
i

γitx
σ−1
σ

it

) σ
σ−1

, Pt =

(∑
i

γσitp
1−σ
it

) 1
1−σ

,

where xi is the quantity of good i consumed, γit is a time-varying preference parameter

that determines the importance of the different final goods to consumers, pit is the

price of final good i, and σ is the (constant) elasticity of substitution between final

goods. It follows that the overall demand for any final good is,

xit = DtP
σ
t p
−σ
it γ

σ
it. (1)

Production is undertaken by many perfectly competitive firms in each industry,

indexed by f . Output by firm f in industry i is given by,

xicft = AictL
α
icftR

1−α
icft , (2)

where Aict is technology, Licft is labor input, and Ricft is another input which we

call resources. These resources play the role of locational fundamentals in our model.

Note that technology is not specific to any particular firm but that it is specific to

each industry-location. This represents the idea that within industry-locations, firms

are able to monitor and copy their competitors relatively easily, while information

flows more slowly across locations.

Labor can move costlessly across locations to achieve spatial equilibrium. This

is a standard assumption in urban economic models and one that seems reasonable

over the longer time horizons that we consider. The overall supply of labor to the

economy depends on an exogenous outside option wage w̄t that can be thought of
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as the wage that must be offered to attract immigrants or workers from rural areas

to move to the cities.14 Thus, more successful cities, where technology grows more

rapidly, will experience greater population growth.

We also incorporate city-specific factors into our framework. Here we have in

mind city-wide congestion forces (e.g., housing prices), city-wide amenities, and the

quality of city institutions. We incorporate these features in a reduced-form way by

including a term λct > 0 that represents a location-specific factor that affects the

firm’s cost of employing labor. The effective wage rate paid by firms in location c is

then w̄tλct. In practice, this term will capture any fixed or time-varying city amenities

or disamenities that affect all industries in the city.

In contrast to labor, resources are fixed geographically. They are also industry-

specific, so that in equilibrium
∑
f Ricft = R̄ic, where R̄ic is fixed for each industry-

location and does not vary across time, though the level of R̄ic does vary across

locations. This approach follows Jones (1975) and has recently been used to study

the regional effects of international trade by Kovak (2013) and Dix-Carneiro & Kovak

(2015). These fixed resources will be important for generating an initial distribution

of industries across cities in our model, and allowing multiple cities to compete in the

same industry in any period despite variation in technology levels across cities.

Firms solve:

max
Licft,Ricft

pitAictL
α
icftR

1−α
icft − w̄tλctLicft − rictRicft.

Using the first order conditions, and summing over all firms in a city-industry, we

obtain the following expression for employment in industry i and location c15:

Lict = A
1

1−α
ict p

1
1−α
it

(
α

w̄tλct

) 1
1−α

R̄ic. (3)

This expression tells us that employment in any industry i and location c will de-

pend on technology in that industry-location, the fixed resource endowment for that

14This feature will capture demographic growth and the movement of workers across cities and
countries, an important feature of the empirical setting that we consider.

15With constant returns to scale production technology and external spillovers, we are agnostic
about the size of individual firms in the model. We require only that there are sufficiently many
firms, and no firms are too large, so that the assumption of perfect competition between firms holds.
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industry-location, factors that affect the industry in all locations (pit), city-specific

factors (λct), and factors that affect the economy as a whole (w̄t).

To close the static model, we need only ensure that income in the economy is

equal to expenditures. This occurs when,

DtPt +Mt = w̄t
∑
c

λct
∑
i

Lict +
∑
i

∑
c

rictR̄ic ,

where Mt represents net expenditures on imports. For a closed economy model we

can set Mt to zero and then solve for the equilibrium price levels in the economy.16

Alternatively, we can consider a (small) open economy case where prices are given

and solve for Mt. We are agnostic between these two approaches.

2.2 Dynamics: Technology growth over time

Technological progress in the model occurs through localized learning-by-doing spillovers

that are external to firms. One implication is that firms are not forward looking when

making their employment decisions within any particular period. Following the ap-

proach of Glaeser et al. (1992), we write the growth rate in technology as,

ln
(
Aict+1

Aict

)
= Sict + εict, (4)

where Sict represent the amount of spillovers available to a city-industry in a period.

Some of the factors that we might consider including in this term are:

Sict = f
(

within-industry spillovers, cross-industry spillovers,

16To solve for the price levels in the closed economy case, we use the first order conditions from
the firm’s maximization problem and Equation 3 to obtain,

pit =

(
α

w̄t

) α
ασ−α−σ

(∑
c

A
1

1−α
ict R̄icλ

α
α−1

ct

) 1−α
ασ−α−σ

(DtP
σ
t )

α−1
ασ−α−σ γ

σ(α−1)
ασ−α−σ
it .

This equation tells us that in the closed-economy case, changes in the price level for goods produced
by industry i will depend on both shifts in the level of demand for goods produced by industry i
represented by γit, as well as changes in the overall level of technology in that industry (adjusted
for resource abundance), represented by the summation over Aict terms.
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national industry technology growth, city-level aggregate spillovers
)
.

We can use Equation 4 to translate the growth in (unobservable) city-industry

technology into the growth of (observable) city-industry employment. We start with

Equation 3 for period t+ 1, take logs, plug in Equation 4, and then plug in Equation

3 again (also in logs), to obtain,

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
Sict +

[
ln(Pit+1)− ln(pit)

]
(5)

+
[

ln(λct+1)− ln(λct)
]

+
[

ln(w̄t+1)− ln(w̄t)
]

+ eict

]
.

where eict = εict+1 − εict is the error term. Note that by taking a first difference

here, the locational fundamentals term R̄ic has dropped out. We are left with an

expression relating growth in a city-industry to spillovers, city-wide growth trends,

national industry growth, and an aggregate national wage term.

The last step we need is to place more structure on the spillovers term. Existing

empirical evidence provides little guidance on what form this function should take.

In the absence of empirical guidance, we choose a fairly simple approach in which

technology growth is a linear function of log employment, so that

Sict =
∑
k

τki max(ln(Lkct), 0) + ξit + ψct , (6)

where each τki ∈ (0, 1) is a parameter that determines the level of spillovers from in-

dustry k to industry i. While admittedly arbitrary, this functional form incorporates

a number of desirable features. If there is very little employment in industry k in

location c (Lkct ≤ 1), then industry k makes no contribution to technology growth

in industry i. Similarly, if τki = 0 then industry k makes no contribution to technol-

ogy growth in industry i. The marginal benefit generated by an additional unit of

employment is also diminishing as employment rises. This functional form does rule

out complementarity between technological spillovers from different industries. While

such complementarities may exist, an exploration of these more complex interactions

is beyond the scope of the current paper.
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One feature of Equation 4 is that it will exhibit scale effects. While this may be a

concern in other types of models, it is a desirable feature in a model of agglomeration

economies, where these positive scale effects will be balanced by offsetting congestion

forces, represented by the λct terms.

Plugging Equation 6 into Equation 5, we obtain our estimation equation:

ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
τii ln(Lict) +

∑
k 6=i

τki ln(Lkct)

+
[

ln(Pit+1)− ln(Pit)
]

+ ξit

+
[

ln(λct+1)− ln(λct)
]

+ ψct (7)

+
[

ln(w̄t+1)− ln(w̄t)
]]

+ eict.

This equation expresses the change in log employment in industry i and location c

in terms of (1) within-industry spillovers generated by employment in industry i, (2)

cross-industry spillovers from other industries, (3) national industry-specific factors

that affect industry i in all locations, (4) city-specific factors that affect all industries

in a location, and (5) aggregate changes in the wage (and thus national labor supply)

that affect all industries and locations. To highlight that this expression incorporates

both within and cross-industry spillovers we have pulled the within-industry spillover

term out of the summation.

This expression for city-industry growth will motivate our empirical specification.

One feature that is worth noting here is that we have two factors, city-level aggregate

spillovers (ψct) and other time-varying city factors (λct), both of which vary at the

city-year level. Empirically we will not be able to separate these positive and negative

effects and so we will only be able to identify their net impact. Similarly, we cannot

separate positive and negative effects that vary at the industry-year level. Note that

the inclusion of the ξit term in Eq. 7 allows for the possibility that some industries

were growing much faster nationally than others, an important feature of the empirical

setting that we consider.

Note that in the absence of spillovers, and with common technologies across loca-

tions, the city size distribution in this model will be determined by the distribution of
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local resource endowments. Once local technology spillovers are added, city sizes will

be determined by a combination of the initial resource endowment and the evolving

technology levels. This hybrid of locational fundamentals and increasing returns is

consistent with some existing empirical results (e.g., Davis & Weinstein (2002) and

Bleakley & Lin (2012)). Once spillovers are included, the dynamics of the system are

complex and depend crucially on the matrix of τki parameters.17 Estimating these

parameters is the goal of our empirical exercise.

While our model provides a theoretically-grounded estimation approach, this is not

the only potential set of agglomeration forces that can yield an estimation equation

that matches the one that we will apply. There are at least two promising alter-

native theories that may yield similar expressions. One such theory could combine

static inter-industry connections, such as pecuniary spillovers through intermediate-

goods sales, with changing transport costs. A second alternative combines static

agglomeration forces with a friction that results in a slow transition towards a static

equilibrium. Our empirical exercises cannot make a sharp distinction between the

mechanisms described in our framework and these alternatives, so they should not

be interpreted as a direct test of the particular agglomeration mechanism described

by the theory. Rather, our empirical results will provide evidence on the pattern

of within and cross-industry agglomeration benefits and provide some evidence on

the types of inter-industry connections that matter. Further work will be needed to

unpack the specific mechanisms through which these inter-industry benefits occur.

3 Empirical setting

The empirical setting used in this paper was chosen because of the rich data available

as well as the particularly clean environment it provides for testing models of agglom-

eration. Relative to modern developed countries, British cities in the early 19th and

20th centuries had few local regulatory constraints on economic growth. For example,

17The dynamics of our model will also depend crucially on city-size congestion forces, which
are not fully modeled here. Because the primary goals of this paper are empirical, we leave a
full exploration of these dynamics for future work. It is also worth noting that our model has the
potential to reproduce some of the patterns of city and city-industry growth documented in Duranton
(2007). In particular, under certain configurations of the matrix of spillover parameters our model
will feature a churning of industries across cities accompanied by slower changes in relative city size.
As in Duranton (2007), any such churning will be driven by cross-industry spillovers.
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the first national zoning laws were not introduced in Britain until 1909, near the very

end of our study period.18 Other regulations, such as environmental controls, were

also limited.19 Of course, the government did have a role to play in the economy

during this period. Examples of important national government programs include

the Poor Law, which provided support for unemployed workers and the destitute, the

Factory Acts, which regulated safety conditions in factories and limited child labor,

and tariff policy. Importantly, however, most of these policies applied fairly evenly

across the country. At the local level, government regulation was relatively weak and

primarily directed towards sanitary improvements (Platt (1996)).

Lee (1984) reports that, in 1881, the middle of our study period, the primary,

secondary and tertiary sectors employed 12.5%, 52.6% and 34.7% of British work-

ers, respectively. Thus, in terms of economic structure, among modern economies

the setting that we study was most similar to heavily industrialized developing and

middle-income countries.20 As a result, our setting can potentially be used to shed

light on such economies, while offering data that are richer and cover a longer period

than those available in most modern developing economies. An additional benefit

of focusing on a historical setting is that eventually our results can be compared to

Britain in the modern period to begin understanding how agglomeration forces evolve

as countries develop. However, in this study we end our study period in 1911 for two

reasons. First, this is the last census year before the First World War, which brought

massive disruption to the British urban system. Second, between 1911 and the first

census after the Second World War it is difficult to generate consistent data series.

There are two other features of the empirical setting that should be noted before

we move on. First, this setting was characterized by high levels of population mobility

and rapid urbanization.21 Second, this mobility was due in part to the highly devel-

oped British transportation system, which connected all of the cities in our database.

18See Platt (1996), Ch. 6.
19See Thorsheim (2006) for details on environmental regulations in Britain during this period.
20In China, for example, employment shares of the primary, secondary and tertiary sector in

2012 was 33.6%, 30.3% and 36.1% respectively, according to the CIA’s World Fact Book. Other
similar examples are Iran, with primary, tertiary and secondary shares of 16.3%, 35.1% and 48.6%
respectively, and Malaysia, with shares of 11%, 36% and 53%.

21During this period the British population was “highly mobile” in the words of Long & Ferrie
(2003). while Baines (1985) shows that population growth in cities was due in large part to the
arrival of new migrants, coming both from the English countryside as well as Ireland, Scotland and
Wales.
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This system was relatively stable across our study period. Due in part to the stability

of this system, as well as the importance of local resources such as coal, existing work

suggests that changes in transport costs had little impact on the location of industry

in Britain during this period (Crafts & Mulatu (2006)).

4 Data

The main database used in this study was constructed from more than a thousand

pages of original British Census of Population summary reports.22 The decennial

Census data were collected by trained registrars during a relatively short time period,

usually a few days in April of each census year. As part of the census, individuals

were asked to state their occupation, but the reported occupations correspond more

closely to industries than to what we think of as occupations today.23 A unique

feature of this database is that the information is drawn from a full census. Virtually

every person in the cities we study provided information on their occupation and all

of these answers are reflected in the employment counts in our data.24

The database includes 31 cities for which occupation data were reported in each

year from 1851-1911, containing 28-34% of the English population over the period

we study. The geographic extent of these cities changes over time as the cities grow,

a feature that we view as desirable for the purposes of our study.25 Appendix 10.2

provides a list of the cities included in the database, as well as a map showing the

22This study uses the most updated version of this database (v2.0). These data and further
documentation can be found at http://www.econ.ucla.edu/whanlon/ under Research.

23Examples from 1851 include “Banker”, “Glass Manufacture” or “Cotton manufacture”. The
database does include a few occupations that do not directly correspond to industries, such as
“Labourer”, “Mechanic”, or “Gentleman”, but these are a relatively small share of the population.
These categories are not included in the analysis. In 1921 the Census office renamed what had
previously been called “occupation” to be “industry” and then introduced a new set of data reflecting
occupation in the modern sense.

24This contrasts with data based on census samples, which often covers 5% or 1% of the available
data. We have experimented with data based on a census sample (from the U.S.) and found that,
when cutting the data to the city-industry level, sampling error has a substantial effect on the
consistency and robustness of the results.

25Other studies in the same vein, such as Michaels et al. (2013), also use metropolitan boundaries
that expand over time. The alternative is working with fixed geographic units. While that may
be preferred for some types of work, given the growth that characterizes most of the cities in our
sample, using fixed geographic units would mean either that the early observations would include a
substantial portion of rural land surrounding the city, or that a substantial portion of city growth
would not be part of our sample in the later years. Either of these options is undesirable.
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location of these cities in England. In general, our analysis industries cover the

majority of the working population of the cities, with most of the remainder employed

by the government or in agriculture.

The industries in the database span manufacturing, food processing, services and

professionals, retail, transportation, construction, mining, and utilities. Because the

occupational categories listed in the census reports varied over time, we combined

multiple industries in order to construct consistent industry groupings over the study

period. This process generates 26 consistent private sector occupation categories.26

Of these, 23 can be matched to the connections matrices used in the analysis. Table

5 in Appendix 10.2 describes the industries included in the database.

This study also requires a set of matrices measuring the pattern of connections

between industries. These measures should reflect the channels through which ideas

may flow between industries. Existing literature provides some guidance here. Mar-

shall (1890) suggested that firms may benefit from connections operating through

input-output flows, the sharing of labor pools, or other types of technology spillovers.

The use of input-output connections is supported by recent literature showing that

firms share information with their customers or suppliers.27 To reflect this chan-

nel, we use an input-output table constructed by Thomas (1987) based on the 1907

British Census of Production (Britain’s first industrial census).28 We construct two

variables: IOinij, which gives the share of industry i’s intermediate inputs that are

sourced from industry j, and IOoutij which gives the share of industry i’s sales of

intermediate goods that are purchased by industry j. One drawback of using these

matrices is that they are for intermediate goods; they will not capture the pattern of

capital goods flows.

Another channel for knowledge flow is the movement of workers, who may carry

ideas between industries or generate other dynamic benefits.29 To reflect this chan-

26Individual categories in the years were combined into industry groups based on (1) the census’
occupation classes, and (2) the name of the occupation. Further details of this procedure are available
at http://www.econ.ucla.edu/whanlon/.

27For example, Javorcik (2004) and Kugler (2006) provide evidence that the presence of foreign
firms (FDI) affects the productivity of upstream and downstream domestic firms.

28For robustness exercises, we have also collected an input-output table for 1841 constructed by
Horrell et al. (1994) with 12 more aggregated industry categories. See Appendix 10.2 for more
details.

29Research by Poole (2013) and Balsvik (2011), using data from Brazil and Norway, respectively,
has highlighted this channel of knowledge flow.
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nel, we construct two different measures of the similarity of the workforces used by

different industries. The first measure is based on the demographic characteristics

of workers (their age and gender) from the 1851 Census. These features had an

important influence on the types of jobs a worker could hold during the period we

study.30 For any two industries, our demographic-based measure of labor force sim-

ilarity, EMPij, is constructed by dividing workers in each industry into these four

available bins (male/female and over20/under20) and calculating the correlation in

shares across the industries.31 A second measure of labor-force similarity, based on

the occupations found in each industry, is more similar to the measures used in pre-

vious studies. This measure is built using U.S. census data from 1880, which reports

the occupational breakdown of employment by industry. We map the U.S. industry

categories to the categories available in our analysis data. Then, for any two indus-

tries our occupation-based measure of labor force similarity, OCCij is the correlation

in the vector of employment shares for each occupation.

Both the demographic-based and occupation-based labor force similarity measures

are meant to capture the idea that firms can benefit from sharing similar labor pools

with other local industries. However, these two measures are meant to reflect two

different dimensions along which labor pooling can be constrained. The demographic-

based measure reflects the fact that the set of industries available to workers can be

constrained by their demographic characteristics, particularly in a historical setting

such as the one we consider. The occupation-based measure reflects a different type of

constraint, which is more dependent on a worker’s education, experience and ability.

Note that two industries could use two sets of demographically similar workforces

but with completely different occupations, or vice versa, so it is plausible that one

channel could matter when the other does not.

30The importance of the contribution made by industry demographics to agglomeration forces
during the period that we study was specifically addressed by Marshall (1890). He gives as an
example the benefits that flowed between textiles and the metals and machinery industry due to the
fact that the textile industries employed substantial amounts of female and child labor while metal
and heavy machinery industry jobs were almost exclusively reserved for adult males.

31This is the most detailed breakdown by age and gender available in our data.
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5 Preliminary analysis

Before moving on to the main analysis, it is useful to begin by analyzing the data

using standard tools from the existing literature. One natural starting point is to

apply the agglomeration measure from Ellison & Glaeser (1997) to our data. These

results, described in Appendix 10.2 Tables 8-9, show that the agglomeration patterns

observed in our data are similar to those documented in modern studies. Specifi-

cally, Britain’s main manufacturing and export industries, such as Textiles, Metal

& Machines, and Shipbuilding, show high levels of geographic agglomeration. Many

non-traded services or retail industries, including Merchants, Agents, Etc., Construc-

tion, and Shopkeepers, Salesmen, Etc. show low levels of agglomeration. Overall, the

median level of industry agglomeration is between 0.02 and 0.026, which is compara-

ble to the levels reported for the modern U.S. economy by Ellison & Glaeser (1997)

and somewhat larger than the levels reported for the modern British economy by

Faggio et al. (Forthcoming).32

Next, we investigate how results obtained using long-difference regressions, in the

spirit of Glaeser et al. (1992) and Henderson et al. (1995), compare to existing results.

These long-difference regression results, which are presented in Appendix 10.3, are

generally similar to the findings reported by Glaeser et al. (1992), which suggest

that firms are likely to benefit primarily from spillovers across industries, rather than

within industries. Our results contrast with those presented in Henderson et al.

(1995), which finds evidence that within-industry effects were more important. As

we will see, these basic patterns are largely consistent with the results obtained using

our preferred estimation strategy, which we introduce next.

32Using industry data for 459 manufacturing industries at the four-digit level and 50 states, Ellison
& Glaeser (1997) calculate a mean agglomeration index of 0.051 and a median of 0.026. For Britain,
Faggio et al. (Forthcoming) calculate industry agglomeration using 94 3-digit manufacturing indus-
tries and 84 urban travel-to-work areas. They obtain a mean agglomeration index of 0.027 and a
median of 0.009. Kim (1995) calculates an alternative measure of agglomeration for the U.S. during
the late 19th and early 20th centuries, but given that he studies only manufacturing industries,
and given the substantial differences between his industry definitions and our own, it is difficult to
directly compare to his results.
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6 Empirical approach

The starting point for our analysis is based on Equation 7, which represents the growth

rate of a city-industry as a function of within and cross-industry agglomeration effects

as well as time-varying city-specific and national industry-specific factors. Rewriting

this as a regression equation we have,

4 ln(Lict+1) = τ̃ii ln(Lict) +
∑
k 6=i

τ̃ki ln(Lkct) + θct + χit + eict , (8)

where 4 is the first difference operator, τ̃ii and τ̃ki include 1/(1− α), θct is a full set

of city-year effects and χit is a full set of industry-year effects. The first term on the

right hand side represents within-industry spillovers, while the second term represents

cross-industry spillovers.33

One issue with Equation 8 is that there are too many parameters for us to credibly

estimate given the available data. In order to reduce the number of parameters, we

need to put additional structure on the spillover terms. As discussed in the previous

section, we follow recent literature in this area, particularly Ellison et al. (2010), by

parameterizing the connections between industries using the available input-output

and labor force similarity matrices:34

τ̃ki = β1IOinki + β2IOoutki + β3EMPki + β4OCCki ∀ i, k .

Substituting this into Eq. 8 we obtain:

33We purposely omitted the last term of Equation 7, ∆ ln(w̄t), because although it could be
estimated as a year-specific constant, it would be collinear with both the (summation of) industry-
year and city-year effects. Moreover, in any given year we also need to drop one of the city or
industry dummies in order to avoid collinearity. In all specifications we chose to drop the industry-
year dummies associated with the “General services” sector.

34Adding an error term to this equation would imply heteroskedastic standard errors, a possibil-
ity that is accommodated by our econometric approach, but would not otherwise alter the basic
estimation approach suggested by the theory.

18



4 ln(Lict+1) = τ̃ii ln(Lict) + β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct) + θct + χit + eict . (9)

Instead of a large number of parameters measuring spillovers across industries, Equa-

tion 9 now contains only four parameters multiplying four (weighted) summations of

log employment. Summary statistics for the cross-industry spillover terms are avail-

able in Appendix Table 6 while the correlations between the cross-industry terms are

available in Appendix Table 7.

There is a clear parallel between the specification in Equation 9 and the empirical

approach used in the convergence literature (Barro & Sala-i Martin (1992)). A central

debate in this literature has revolved around the inclusion of fixed effects for the

cross-sectional units (see, e.g., Caselli et al. (1996)). In our context, the inclusion of

such characteristics could help control for location and industry-specific factors that

affect the growth rate of industry and are correlated with initial employment levels.

However, the inclusion of city-industry fixed effects in Equation 9 will introduce a

mechanical bias in our estimated coefficients (Hurwicz (1950), Nickell (1981)). This

bias is a particular concern in a setting where the time-series is limited. Solutions to

these issues have been offered by Arellano & Bond (1991), Blundell & Bond (1998),

and others, yet these procedures can also generate biased results, as shown by Hauk Jr.

& Wacziarg (2009). In a recent review, Barro (2015) uses data covering 40-plus years

and argues (p. 927) that in this setting, “the most reliable estimates of convergence

rates come from systems that exclude country fixed effects but include an array of X

variables to mitigate the consequence of omitted variables.” Our approach essentially

follows this advice, but with the additional advantage that we have two cross-sectional

dimensions, which allows for the inclusion of flexible controls in the form of time-

varying city and industry effects.

There are two issues to address at this point. First, there could be measurement

error in Lict. Since this variable appears both on the left and right hand side, this

would mechanically generate an attenuation bias in our within-industry spillover es-

timates. Moreover, since Lict is correlated with the other explanatory variables, such

measurement error would also bias the remaining estimates. We deal with measure-
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ment error in Lict on the right hand side by instrumenting it with lagged city-industry

employment.35 Under the assumption that the measurement error in any given city-

industry pair is iid across cities and time, our instrument is LInstict = Lict−1 × gi−ct,
where Lict−1 is the lag of Lict and gi−ct is the decennial growth rate in industry i

computed using employment levels in all cities except city c, as in Bartik (1991).

Second, we are also concerned that there may be omitted variables that affect both

the level of employment in industry j and the growth in employment in industry i.

Such variables could potentially bias our estimated coefficients on both the cross-

industry and (when j = i) the within-industry spillovers. For instance, if there

is some factor not included in our model which causes growth in two industries i

and k 6= i in the same city, a naive estimation would impute such growth to the

spillover effect from k to i, thus biasing the estimated spillover upward. Our lagged

instrumentation approach can also help us deal with these concerns. Specifically,

when using instruments with a one-decade lag to address endogeneity concerns the

exclusion restriction is that there is not some omitted variable that is correlated with

employment in some industry k in period t and affects employment growth in industry

i from period t+1 to t+2. Moreover, the omitted variable cannot affect growth in all

industries in a location, else it would be captured by the city-year fixed effect, nor can

it affect the growth rate of industry i in all cities.36 Thus, while our approach does

not allow us to rule out all possible confounding factors, it allows us to narrow the set

of potential confounding forces relative to most previous work in this area. Now, for

the cross-industry case, the summation terms in Eq. 9 such as
∑
k 6=i IOinki ln(Lkct)

are instrumented with
∑
k 6=i IOinki ln(LInstkct ), where LInstkct is as described above.

The estimation is performed using OLS or, when using instruments, two-stage

least squares. Correlated errors are a concern in these regressions. Specifically, we

are concerned about serial correlation, which Bertrand et al. (2004) argue can be a

serious concern in panel data regressions, though this is perhaps less of a concern for

us given the relatively small time dimension in our data. A second concern is that

industries within the same city are likely to have correlated errors. A third concern,

highlighted by Conley (1999) and more recently by Barrios et al. (2012), is spatial

35This approach is somewhat similar to the approach introduced by Bartik (1991) and has been
suggested by Combes et al. (2011).

36The results are not sensitive to the length of the lag used in the instrumentation. We have
experimented with two- and three-decade lags and obtained essentially the same results.
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correlation occurring across cities. Here the greatest concern is that error terms may

be correlated within the same industry across cities (though the results presented in

Appendix 10.5.8 suggest that cross-city effects are modest).

To deal with all of these concerns we use multi-dimensional clustered standard

errors following work by Cameron et al. (2011) and Thompson (2011). We cluster by

(1) city-industry, which allows for serial correlation; (2) city-year, which allows for

correlated errors across industries in the same city and year; and (3) industry-year,

which allows for spatial correlation across cities within the same industry and year.

This method relies on asymptotic results based on the dimension with the fewest

number of clusters. In our case this is 23 industries × 6 years = 138, which should

be large enough to avoid serious small-sample concerns.

In order to conduct underidentification and weak-instrument tests while cluster-

ing standard errors in multiple dimensions, we have produced new statistical code

implementing the approach from Kleibergen & Paap (2006). This was necessary be-

cause existing statistical packages are unable to calculate these tests correctly when

clustering by more than two dimensions. The procedure used to generate these test

statistics is described in Appendix 10.4.2.

Finally, we may be concerned about how well our estimation procedure performs

in a data set of the size available in this study. To assess this, we conduct a series

of Monte Carlo simulations in which we construct 500 new data sets with a size and

error structure based on the true data, but with known spillover parameter values.

We then apply our estimation procedure to these simulated data in order to obtain

a distribution of placebo coefficient estimates, which can then be compared to the

estimates obtained using the true data. These simulations, which are described in

more detail in Appendix 10.4.1, suggest that our estimation procedure performs well

in datasets with a size and error structure similar to the true data.

To simplify the exposition, we will hereafter collectively refer to the set of regres-

sors ln(Lict) for i = 1...I as the within variables. Similarly, with a small abuse of

notation the term
∑
k 6=i IOinki ln(Lkct) is referred to as IOin, and so on for IOout,

EMP , and OCC. We collectively refer to the latter terms as the between regressors

since they are the parametrized counterpart of the spillovers across industries.
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7 Main results

Our main regression results are based on the specification described in Equation 9.

The estimation strategy involves using four measures for the pattern of cross-industry

spillovers: forward input-output linkages, backward input-output linkages, and two

measures of labor force similarity. Our main results, in Table 1, consider all four

channels simultaneously, while Appendix 13 presents regressions including one chan-

nel at a time. In Columns 1-3 of Table 1 we estimate a single coefficient reflecting

within-industry spillovers, while Columns 4-6 present results in which we estimate

industry-specific within-industry effects. These heterogeneous within-industry coeffi-

cients, which are not reported in Table 1, will be explored later. Columns 1 and 4

presents OLS results. In Column 2 and 5 we instrument the within-industry terms.37

In Column 3 and 6 we use instruments for both the within-industry and cross-industry

terms.

These results show strong positive effects operating through forward input-output

connections, suggesting that local suppliers play an important role in industry growth.

The importance of local suppliers to industry growth is perhaps the clearest and most

robust result emerging from our analysis. There is little evidence of positive effects

operating through local buyers. The results also provide some evidence that the

presence of other industries using similar occupations can have dynamic benefits.

Also, the results in Columns 1-3 suggest that own-industry employment is negatively

related to subsequent growth. In addition, comparing the results in Columns 1-3 with

those in Columns 4-6 shows that allowing for heterogeneity in the within-industry

effects does appear to be important. Finally, a comparison across columns for each

spillover measure shows that the IV results do not differ from the OLS results in

a statistically significant way, suggesting that any measurement error or omitted

variables concerns addressed by instruments are not generating substantial bias in

the OLS results. Moreover, the test statistics presented at the bottom of Table 1

suggests that our instruments are sufficiently strong.

Based on the results from Column 6 of Table 1, our preferred specification, a one

37We do not report first-stage results for our instrumental variables regressions because these
involve a very large number of first-stage regressions. Instead, for each specification we report the
test statistics for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006)
as well as the test static for weak instruments test based on the Kleibergen-Paap Wald statistic. It is
clear from these statistics that weak instruments are not a substantial concern in these specifications.
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standard deviation increase in the presence of local suppliers increases city-industry

growth by 14.4%. Turning to the occupational similarity channel, a one standard

deviation increase in the presence of occupationally-similar local industries leads to

a 14.8% increase in city industry growth when using the results from Column 6 of

Table 1. Thus, both of these channels appear to exert a substantial positive effect on

city-industry growth.

Table 1: Main results for cross-industry connections

(1) (2) (3) (4) (5) (6)
Log employment in 0.0421 0.0450 0.0388 0.1601*** 0.1401*** 0.1457***
local supplier (0.0283) (0.0304) (0.0283) (0.0464) (0.0473) (0.0472)
industries

Log employment in 0.0334 0.0020 -0.0062 -0.0481 -0.0888 -0.1145
local buyer (0.0301) (0.0319) (0.0300) (0.0693) (0.0700) (0.0725)
industries

Log employment in local 0.0036 0.0036 -0.0099 0.0445 0.1145* 0.0691
industries using (0.0229) (0.0241) (0.0240) (0.0693) (0.0616) (0.0605)
demographically
similar workers

Log employment in local 0.0413 0.0309 0.0270 0.1580** 0.1698** 0.1503*
industries using (0.0363) (0.0341) (0.0345) (0.0777) (0.0845) (0.0854)
similar occupations

Log own-industry -0.0871*** -0.0514* -0.0490*
employment (0.0321) (0.0279) (0.0285)
Observations 4,253 3,544 3,539 4,253 3,539 3,539
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
Within terms homog homog homog heter heter heter
KP under 24.86 25.45 22.09 24.52
KP weak 4677.9 858.6 52.36 35.68

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry con-
nection variables have been standardized for comparability. Heterogeneous regressors within are
included in Columns 4-6 but not displayed. City-time and industry-time effects are included in
all regressions but not displayed. 2SLS regressions use lagged instruments. Note that the number
of observations falls for the instrumented regressions because the instruments require a lagged
employment term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn
= within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Multiplier
underidentification test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test
statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic.
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Our analysis can also help us understand the strength of within-industry spillovers,

reflected in the ln(Lict) term in Equation 8.38 When analyzing these results, it is

important to keep in mind that they reflect the net effect of within-industry agglom-

eration forces, which may be generated through a balance between agglomeration

forces and negative forces such as competition or mean-reversion due to the diffu-

sion of technologies across cities. We cannot identify the strength of local within-

industry agglomeration forces independent of counteracting forces. However, it is the

net strength of these forces, which we are able to estimate, that is relevant for un-

derstanding the contribution of within-industry agglomeration forces to city growth.

Thus, our results suggest that within-industry agglomeration effects generally do not

make a positive contribution to city employment growth.

We have already seen, in Table 1 Columns 1-3, that the average within-industry

effect across all industries is negative, but there is also evidence that allowing het-

erogeneity in these effects is important. We explore these heterogeneous within-

industry effects in Figure 1, which presents coefficients and 95% confidence intervals

for industry-specific within-industry spillover coefficients from regressions correspond-

ing to Column 6 of Table 1. In only one industry, shipbuilding, do we observe any

evidence of positive within-industry effects. This industry was characterized by in-

creasing returns and strong patterns of geographic concentration. All other industries

exhibit slower growth in locations where initial industry employment was large, after

controlling for other forces. Within-industry agglomeration benefits, it would appear,

are more the exception than the rule.

The results presented so far describe coefficients generated using all industries,

where each industry is given equal weight. We have also calculated weighted re-

gressions, where the set of observations for each city-industry is weighted based on

employment in that city-industry at the beginning of each period. These results,

available in Appendix 10.5.4, show qualitatively similar results to those shown above

for the importance of local suppliers term, with only slightly smaller estimated co-

efficients. This provides confidence that our main findings are not being driven by

small cities or industries. The weighted results also show stronger evidence of a neg-

ative effect through the presence of local buyers, but this finding appears to be quite

sensitive to the set of industries included in the analysis. The agglomeration bene-

38In a static context these are often referred to as localization economies.
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Figure 1: Strength of within-industry effects by industry

Results correspond to the regression described in Column 6 of Table 1. This figure displays coefficient

estimates and 95% confidence intervals based on standard errors clustered by city-industry, city-year,

and industry-year. The regression includes a full set of city-year and industry-year effects as well as

between terms. Both the within and between terms are instrumented using one-decade lags.

fits from occupationally similar industries disappear when weighting by city-industry

size, suggesting that labor market pooling benefits may be larger for small industries

or in small cities.

We have also investigated the robustness of our results to dropping individual in-

dustries or individual cities from the analysis database (see Appendix 10.5.2). These

exercises show that the significance of the estimates on the importance of local sup-

pliers and occupationally-similar industries are robust to dropping any city or any

industry. However, the estimated coefficient and confidence levels for the impact of

local buyer industries is sensitive to the exclusion of particular industries. Specifically,

when shipbuilding is excluded we observe that the coefficient on local buyer indus-
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tries becomes positive but not statistically significant.39 This suggests that in general

the presence of local buyers may have a mild positive effect on industry growth. In

addition, we have explored the sensitivity of our results to using alternative concave

functional relationships such as a square root or fifth root in place of the log specifi-

cation used in our main results. These results, available upon request, show that our

findings are not sensitive to these alternatives. Also, in Appendix 10.5.5 we provide

results where, as the outcome variable, we look at city-industry employment growth

over two or three-decade differences. These deliver results that are quite similar to

those shown in Table 1.

We have also explored the robustness of our results to the use of alternative con-

nections matrices. In particular, in Appendix 10.5.7 we present results obtained while

using the less detailed input-output table constructed by Horrell et al. (1994), which

covers 12 more aggregated industry categories in 1841. When using this alternative

matrix we continue to find evidence of positive effects generated by the presence of

local suppliers. These results also suggest that local buyers may generate positive

benefits, but as before this result appears to be sensitive to the set of industries

included in the analysis.

It is also possible to split our data in order to look at how agglomeration forced

differ across time. In Appendix 10.5.6 we present results splitting the data in 1881. In

these results we observe similar patterns in both the early and late years, though the

strength of the impact of local supplier industries and other occupationally similar

local industries increases in the later period. That may indicate that these agglomer-

ation channels strengthened as the country developed, or they may be related to the

introduction of many new Second Industrial Revolution technologies, in areas such

as chemicals and electronics, during the 1881-1911 period.

The results discussed so far reveal average patterns across all industries. An ad-

ditional advantage of our empirical approach is that it is also possible to estimate

industry-specific coefficients in order to look for (1) heterogeneity in the industries

that benefit from each type of inter-industry connection or (2) heterogeneity in the

industries that produce each type of inter-industry connections. In Appendix 10.5.3,

we estimate industry-specific coefficients for both spillover-benefiting and spillover-

producing industries and then compare them to a set of available industry character-

39Shipbuilding stands out relative to the other industries because it is particularly reliant on local
geography.
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istics such as firm size, export and final goods sales shares, and labor or intermediate

cost shares. With only 23 estimated industry coefficients we cannot draw strong

conclusions from these relationships. However, our results do suggest several inter-

esting patterns. The only clear result is that industries that benefit from or produce

spillovers for other industries using occupationally-similar labor pools tend to have a

higher labor cost to sales ratio, a finding that seems very reasonable. We also observe

a consistent negative relationship between firm size and all types of inter-industry con-

nections. While this relationship is not statistically significant, it is consistent across

all spillover types and it fits well with previous work highlighting the importance of

inter-industry connections for smaller firms (e.g., Chinitz (1961)).

In Appendix 10.5.3 we look at how the estimated industry-specific within-industry

coefficients are related to industry characteristics. With such a small number of indus-

try coefficients we cannot draw strong conclusions from these results. However, we do

observe some evidence that within-industry connections are more important in indus-

tries with larger firm sizes, which contrasts with the consistent negative relationship

that we observe between firm size and cross-industry spillovers.

While the analysis described above focuses on spillovers occurring within cities,

we have also explored the possibility that there may be important cross-city effects.

To explore cross-city effects, we have run additional regressions including variables

measuring market size as well as cross-industry spillovers occurring across cities. Our

results, reported in Appendix 10.5.8, suggest that cross-city effects are much weaker

than within-city forces. This makes sense given that we think that the shape of cities

reflects the rapidly decaying strength of local agglomeration forces. We also find that

accounting for cross-city effects has little impact on our estimates of the strength of

within-city agglomeration forces.

8 Strength of the agglomeration forces

In this section we examine the relationship between city size and city-industry growth

and show how our city-year effects can be used to construct a summary measure of

the aggregate strength of the many cross-industry agglomeration forces present in

our model. In standard urban models, the impact of agglomeration forces is balanced

by congestion forces related to city size, operating through channels such as higher
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housing prices or greater commute times. In our model, we have been largely agnostic

about the form of the congestion forces, which will be captured primarily by the

city-time effects. Thus, examining these estimated city-time coefficients offers an

opportunity for assessing the net impact of dynamic congestion or agglomeration

force related to overall city size.40 Also, the difference between these estimated city-

time effects and city growth rates must be due to the impact of the agglomeration

forces in the estimation equation. As a result, comparing the estimated city-time

effects to actual city growth rates allows us to quantify the combined strength of the

many cross-industry agglomeration forces captured by our measures.

To gain some intuition into this comparative exercise, consider the graphs in Figure

2. The dark blue diamond symbols in each graph describe, for each decade starting

in 1861, the relationship between the actual growth rate of city working population

and the log of city population at the beginning of the decade. The slopes of the fitted

lines for these series fluctuate close to zero, suggesting that on average Gibrat’s Law

holds for the cities in our data.

We want to compare the relationship between city size and city growth in the

actual data, as shown by the dark blue diamonds in Figure 2, to the relationship

between these variables obtained while controlling for within and cross-industry ag-

glomeration forces. This can be done using the estimated city-time effects represented

by θct in Eq. 9. The red squares in Figure 2 describe the relationship between the

estimated city-year coefficients for each decade, θ̂ct, and the log of city population

at the beginning of each decade. In essence, these are showing us the relationship

between city size and city growth after controlling for national industry growth trends

and the agglomeration forces included in our model.

We can draw three lessons from these graphs. First, in all years the fitted lines

based on the θ̂ct terms slope downward more steeply than the fitted lines for actual

city growth. This suggests that, once we control for cross-industry agglomeration

forces, city size is negatively related to city growth, consistent with the idea that

there are dynamic city-size congestion forces. Second, the difference between the

slopes of the two fitted lines can be interpreted as the aggregate effect of the various

agglomeration forces in our model averaged across cities. Put simply, if we can add

up the strength of the convergence force in any period and compare it to the actual

40These results will reflect only the net impact of city size, including both congestion and agglom-
eration forces.
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Figure 2: City size and city growth

Solid lines: Fitted lines comparing actual city growth over a decade to the log of city size at the
beginning of the decade. Dotted lines: Fitted lines comparing estimated coefficients from city-
time effects for each decade to the log of city size at the beginning of the decade. Blue diamonds:
Plot the actual city growth over a decade against the log of city population at the beginning of
the decade. Red squares: Plot the estimated city-time coefficients over the same decade (the θct
terms estimated using Eq. 9) against the log of city population at the beginning of the decade.
The bottom right-hand panel compares the log of city population in 1851 to the average of city
growth rates over the entire 1861-1911 period and the average of city-time fixed effects across the
entire 1861-1911 period.
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pattern of city growth, then the difference must be equal to the strength of the

agglomeration forces. Third, the patterns described in Figure 2 appear to be close to

linear in logs, suggesting that these forces do not differ dramatically across different

city sizes.

The strength of these effects can be quantified in terms of the implied convergence

rate following the approach of Barro & Sala-i Martin (1992). We run,

θ̂ct = a0 + a1 ln(Lct) + εct (10)

θ̃ct = b0 + b1 ln(Lct) + εct (11)

where θ̂ct is the estimated city-time effect for the decade from t to t + 1 from a

regression based on Eq. 9 (but omitting the within terms, which clearly represent a

convergence rather than a divergence force), Lct is the working population of the city

in year t, and θ̃ct is the industry-demeaned growth rate of city c from t to t + 1.41

These regressions are run separately for each decade from 1861 to 1911, either with

or without weighting each observation by initial city-industry employment, and using

lagged values as instruments as in the main results. Convergence rates are then

calculated using the estimated a1 and b1 coefficients. A comparison of the a1 and b1

coefficients describes, at the city level, the impact of accounting for cross-industry

spillovers.

Results based on unweighted regressions are presented in the top panel of Table 2.

The two left-hand columns describe the results from Equation 10 and the annualized

city-size divergence rate implied by these estimates. The next two columns describe

similar results based on Equation 11. The difference between these two city-size

divergence rates, given in the right-hand column, describes the aggregate strength of

the agglomeration force reflected in the cross-industry terms. These results suggest

that the strength of city agglomeration forces, in terms of the implied divergence rate,

was 2.0-2.3% per decade. In the bottom panel of Table 2 we calculate similar results

except that the θ̂ct terms are obtained using regressions in which each observation

is weighted based on the employment in the city-industry at the beginning of each

period. These results suggest a slightly weaker agglomeration force, equal to an

41I.e., θ̃ct is the estimated value of θct obtained from the regression 4 ln(Lict+1) = θct +χit + eict.
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implied divergence rate of 1.6-1.7% per decade.

Table 2: Aggregate strength of the agglomeration forces

Column 1 presents the a1 coefficients from estimating Equation 10 for each decade (cross-sectional
regressions). Column 2 presents the decadal convergence rates implied by these coefficients. Col-
umn 3 presents the b1 coefficients from estimating Equation 11 and Column 4 presents the decadal
divergence rates implied by these coefficients. Column 5 gives the aggregate strength of the diver-
gence force due to the agglomeration economies, which is equal to the difference between the decadal
divergence coefficients in Columns 2 and 4. Results in the top panel are unweighted, while results
in the bottom panel are from regressions in which each city-industry observation is weighted by the
employment in that city-industry at the beginning of the period.

We can use a similar exercise to estimate the aggregate strength of the convergence

force due to within-industry effects. We begin by estimating,

4 ln(Lict+1) = τ̃ii ln(Lict) + θWITHIN
ct + χit + eict . (12)

which is just Eq. 9 with the cross-industry terms omitted. Next, we use the estimated

values of θWITHIN
ct to estimate,
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θ̂WITHIN
ct = d0 + d1 ln(Lct) + εct. (13)

We then calculate the convergence force associated with the within-industry terms

using the same approach that we used previously, i.e. we compare the d1 coefficients

with the slopes estimated using Eq. 11. Table 3 describes the results. The negative

measured divergence force in this table highlights that within-industry effects, on net,

act as a convergence force. The strength of this force is sensitive to whether the re-

gressions are weighted, which suggests that the negative within-industry employment

effects are likely to vary with initial city-industry employment.

Table 3: Aggregate strength of convergence forces due to the within-industry effects

Column 1 presents the d1 coefficients from estimating Equation 13 for each decade (cross-sectional
regressions). Column 2 presents the decadal divergence rates implied by these coefficients. Column
3 presents the b1 coefficients from estimating Equation 11 and Column 4 presents the decadal diver-
gence rates implied by these coefficients. Column 5 gives the aggregate strength of the divergence
force due to the agglomeration economies, which is equal to the difference between the decadal con-
vergence coefficients. The negative values in Column 5 indicate that within-industry effects are, on
net, a source of convergence across cities. Results in the top panel are unweighted, while results in
the bottom panel are from regressions in which each city-industry observation is weighted by the
employment in that city-industry at the beginning of the period.
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One caveat to keep in mind when assessing these results is that there are likely

to be agglomeration forces not captured by our estimation, which would lead us to

understate the strength of the agglomeration forces. Also, some congestion forces

may also be captured by our cross-industry terms. Similarly, there may be some

agglomeration forces captured by the within-industry terms, which will also not be

reflected in our results. Thus, the strength of the cross-industry agglomeration force

measured here is likely to be a lower bound on the true values.

9 Conclusion

In the introduction, we posed a number of questions about the nature of localized

agglomeration forces. The main contribution of this study is to provide a theoretically

grounded empirical approach that can be used to address these questions and the

detailed city-industry panel data needed to implement it. We can now provide some

answers for the particular empirical setting that we study. First, we find evidence that

cross-industry agglomeration economies were more important than within-industry

agglomeration forces for generating city employment growth. Within-industry effects

are, on net, generally negative. This suggests that local clusters of firms working in

the same industry, which have attracted substantial attention, are unlikely to deliver

dynamic benefits. Second, our results suggest that industries grow more rapidly when

they co-locate with their suppliers or with other industries that use occupationally-

similar workforces. This result is in line with arguments made by Jacobs (1969), as

well as recent empirical findings. We document a clear negative relationship between

city size and city growth that appears once we account for agglomeration forces related

to a city’s industrial composition. This suggests that Gibrat’s law is generated by

a balance between agglomeration and dispersion forces. An estimate of the overall

strength of the agglomeration forces captured by our approach, in terms of the implied

annual divergence rate in city size, is 1.6-2.3% per decade.

The techniques introduced in this paper can be applied in any setting where

sufficiently rich long-run city-industry panel data can be constructed. Recent work

has made progress in constructing data of this type for the U.S. in both the modern

and historical period. Applying our approach to these emerging data sets is another

promising avenue for future work.
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10 Appendix (For Online Publication Only)

10.1 Theory appendix

The main text presents a simple theoretical framework used to motivate our analysis.

In this appendix, we show that we can add additional complexity to the model without

substantially changing the final estimating equation. In particular, we introduce

capital and intermediate inputs into the production function. The new production

function is,

xicft = AictL
α
icftK

β
icftI

γ
icftR

1−α−β−γ
icft ,

where we have introduced capital inputs, Kicft, and intermediate inputs Iicft, into the

production function, while retaining the same basic Cobb-Douglas structure. The

parameters α, β, and γ determine the relative importance of these inputs in the

production process of each industry. For now, we make the simplifying assumption

that these parameters are constant across all industries, but at the end of this section

we discuss the possibility that they may differ across industries. In this extended

model, we make the same assumptions about technology, labor and resources as in

the baseline model.

Capital is mobile across locations with a national price given by rt. The overall

supply of capital in the economy is K̄t. While we could model the evolution of this

object, doing so would merely distract from the key focus of our theory.42 Thus,

to keep things simple we take the overall supply of capital in any given period as

exogenously given. The income from capital is assumed to be spread evenly across

individuals.

The set of intermediate inputs used in production differs across industries, but

within each industry, all firms use inputs in the same fixed proportions. Because we

assume free trade, this feature is a result, rather than an assumption. Let Z be an

input-output matrix, with element zij such that Iit units of intermediate input to

industry i requires Iitzij units of output from industry j, i.e., the production function

42Moreover, the substantial level of international capital flows that took place during the pe-
riod that we study suggest that a closed economy model of the evolution of this quantity may be
inappropriate for the empirical setting.
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for intermediate inputs is Leontief. Then total intermediate demand for the output

from industry j is equal to xIOjt =
∑
i Iitzij. With costless trade, each industry will

face a national-level industry-specific intermediate input price in each period, denoted

qit.

The resulting firm optimization problem is,

max
Licft,Kicft,Iicft,Ricft

pitAictL
α
icftK

β
icftI

γ
icftR

1−α−β−γ
icft − w̄tλctLicft − rtKicft − qitIicft − dictRicft.

Using the first order conditions, and summing over all firms in a city-industry, we

obtain the following expression for employment in industry i and location c,

Lict = Aρictp
ρ
it

(
α

w̄tλct

)ρ(1−β−γ)
(
β

rt

)ρβ (
γ

qit

)ργ
R̄ic , (14)

where ρ = 1/(1 − γ − β − α) > 0. This expression tells us that, as in the baseline

model, employment in any industry i and location c will depend on technology in that

industry-location, the fixed resource endowment for that industry-location, factors

that affect the industry in all locations (pit, qit), city-specific factors (λct), and factors

that affect the economy as a whole (w̄t, rt). Note that ρ represents the inverse of

the exponent on fixed city-industry resources. Thus, we can see that the impact of

a city-specific shock that increases costs (higher λct) on city-industry employment

will be greater the less important are fixed city-industry resources in production, i.e.,

when industries are able to more easily move production to other cities.

Equilibrium within a period is defined as the set of prices {Pt,pit,rt,qit,dict} and

quantities {DF
t ,xict,Licft, Kicft,Iicft,Ricft} such that given the set of technologies

{Aict},

1) The first order conditions of the firm optimization problem are satisfied

2) Labor markets clear in each city, i.e.,
∑
i

∑
f Licft = Lct for all c

3) The capital market clears, i.e.,
∑
c

∑
i

∑
f Kicft = K̄t

4) Local resource markets clear, i.e.,
∑
f Ricft = R̄ic for all i and c

5) Output markets clear, i.e.,
∑
c

∑
f xicft = xit = xFt + xIOit

6) Total income (after any savings) is equal to total final goods expenditures
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Equilibrium condition (6) requires that,

DtPt +Mt +Bt =
∑
c

∑
i

w̄tλctLict +
∑
c

∑
i

rtK̄ict +
∑
c

∑
i

dictR̄ic.

where Mt represents net expenditures on imports and Bt represents the (exogenously

given) amount of savings in the period. For a closed economy model we can set Mt

to zero and then solve for the equilibrium price levels in the economy. Alternatively,

we can consider a (small) open economy case where prices are given and solve for Mt.

We are agnostic between these two approaches.

We continue to use the same expression describing the evolution of technology as

in the baseline model (Equation 4). Starting with Equation 14 for period t+1, taking

logs, plugging in Equation 4, and then plugging in Equation 14 again (also in logs),

we obtain,

ln(Lict+1)− ln(Lict) = ρSict + ρ
[

ln(pit+1)− ln(pit)
]

− ρ(1− β − γ)
[

ln(λct+1)− ln(λct)
]

(15)

+ ρ(1− β − γ)
[

ln(w̄t+1)− ln(w̄t)
]

− ρβ
[

ln(rt+1)− ln(rt)
]

+ ργ
[

ln(qit+1)− ln(qit)
]

+ eict.

where eict = εict+1 − εict is the error term.

Finally, plugging Equation 6 into Equation 15, we obtain,

ln(Lict+1)− ln(Lict) = ρτii ln(Lict) + ρ
∑
k 6=i

τki ln(Lkct)

+ ρ
[

ln(pit+1)− ln(pit)
]

+ ργ
[

ln(qit+1)− ln(qit)
]

+ ρξit

+ ρ(1− β − γ)
[

ln(λct+1)− ln(λct)
]

+ ρψct (16)

+ ρ(1− β − γ)
[

ln(w̄t+1)− ln(w̄t)
]

+ ρβ
[

ln(rt+1)− ln(rt)
]

+ eict.
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This expression mirrors the estimating equation given in Equation 7 up to the param-

eters ρ, β and γ. As in our baseline estimating equation, the change in employment

growth is expressed as a function of the initial level of employment, a set of national

industry-specific factors, a set of city-specific factors that affect all industries, and

national wage and capital rental rates that affect all industries and all cities.

We can use this expression to consider some of the assumptions made in the

main text in more detail. First, consider the possibility that trade costs, rather than

technology spillovers, might be driving the effects we observe. To represent this,

suppose that we modified the model to incorporate trade costs while at the same

time eliminating technology spillovers. Ignoring for now general equilibrium effects,

Equation 16 tells us that trade costs will affect city-industries through either the price

of inputs (e.g., through local suppliers) or the price of outputs (e.g., through market

access). With trade costs, both the input and the output prices faced by firms in

industry i can vary across cities.

Now, focusing on the input prices side, suppose that there are two cities, A and

B, and that City A has many more of industry i suppliers than city B so that the cost

of intermediate inputs to industry i is lower in City A than in City B. From Equation

14 we can see that, all else equal, this implies that employment in industry i will be

larger in City A than in City B in some initial period: this is static agglomeration.

However, as we roll the model forward, Equation 15 shows that, absent other changes,

industry i will not grow faster in City A than in City B. In the absence of other effects,

input-output connections alone cannot act as a dynamic agglomeration force. Where

input-output connections can generate dynamic agglomeration is by transmitting the

effects of other changes, such as falling transport costs. However, falling trade costs

cannot be a sustained force of dynamic agglomeration, since trade costs are bounded

below by zero and were fairly stable over at least part of the period we study.43 This

suggests that input-output connections and trade costs can be an important static

force, but these forces are unlikely to generate the dynamic agglomeration patters

studied here.

In a world of static inter-industry agglomeration forces, the growth in industry i

must be driven by growth in industry j, rather than the level of industry j. But this

43Crafts & Mulatu (2006) conclude that, “falling transport costs had only weak effects on the
location of industry in the period 1870 to 1911.” Jacks et al. (2008) find a rapid fall in external
trade costs prior to 1880, with a much slower decline thereafter.
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raises questions about the causes of the initial growth in industry j. Ultimately, a

world of static agglomeration forces is a world of exogenous city-industry growth. In

contrast, dynamic agglomeration offers an explanation for city industry growth, just

as endogenous growth theory offers an explanation for aggregate growth.

Variation in Industry Production Function Parameters

A second interesting extension to consider is the possibility that the share of each

input in the production function varies across industries. In particular, suppose that

we allow the production function parameters to vary across industries. Indexing these

parameters by i, we now have the following expression for city-industry employment

growth,

ln(Lict+1)− ln(Lict) = ρiτii ln(Lict) + ρi
∑
k 6=i

τki ln(Lkct)

+ ρi

[
ln(pit+1)− ln(pit)

]
+ ρiγi

[
ln(qit+1)− ln(qit)

]
+ ρiξit

+ ρi(1− βi − γi)
[

ln(λct+1)− ln(λct)
]

+ ρiψct

+ ρi(1− βi − γi)
[

ln(w̄t+1)− ln(w̄t)
]

+ ρiβi

[
ln(rt+1)− ln(rt)

]
+ eict .

We can see that the impact of spillovers on city-industry growth in this setting will

depend on the industry-specific parameter ρi, where ρi = 1/(1−γi−βi−αi) > 0. This

parameter is the inverse of the exponent on local resources. Thus, the more important

are fixed local resources in the production process, the weaker will be the impact of

spillover on city-industry employment growth. This makes sense because when fixed

local resources are important it is more difficult to shift industry employment across

locations.

The estimates obtained in the empirical portion of this paper will reflect the impact

of spillover reflected in city-industry employment, which will incorporate both the

spillover term and the importance of fixed local resources. In further work, it would

be interesting to separate these two factors, which is possible when sufficient data are

available to estimate industry-specific input parameters. However, for city growth the

relevant value is the coefficient that we estimate, which reflects the combination of
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the strength of spillovers and the extent to which industry employment can respond

to those spillovers.

10.2 Data appendix

Table 4: Cities in the primary analysis database

Population Working population Workers in analysis
City in 1851 in 1851 industries in 1851
Bath 54,240 27,623 22,836
Birmingham 232,841 111,992 94,188
Blackburn 46,536 26,211 24,279
Bolton 61,171 31,211 28,576
Bradford 103,778 58,408 54,685
Brighton 69,673 32,949 27,151
Bristol 137,328 64,025 53,361
Derby 40,609 19,299 16,354
Gateshead 25,568 10,003 8,373
Halifax 33,582 18,058 16,171
Huddersfield 30,880 13,922 12,132
Hull 84,690 36,983 30,810
Ipswich 32,914 14,660 11,745
Leeds 172,270 83,570 73,696
Leicester 60,584 31,140 28,097
Liverpool 375,955 165,300 137,759
London 2,362,236 1,088,285 880,602
Manchester 401,321 204,688 183,406
Newcastle-upon-Tyne 87,784 38,564 32,136
Northampton 26,657 13,626 11,839
Norwich 68,195 34,114 29,032
Nottingham 57,407 33,967 30,538
Oldham 72,357 38,853 35,911
Portsmouth 72,096 31,345 18,536
Preston 69,542 36,864 32,696
Sheffield 135,310 58,551 51,092
South shields 28,974 11,114 9,895
Southampton 35,305 14,999 11,845
Stockport 53,835 30,128 27,676
Sunderland 63,897 24,779 21,302
Wolverhampton 49,985 22,727 19,495
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Figure 3: Map showing the location of cities in the analysis database
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Table 5: Industries in the primary analysis database with 1851 employment

Manufacturing Services and Professional
Chemicals & drugs 11,501 Professionals* 40,733
Clothing, shoes, etc. 328,669 General services 458,808
Instruments & jewelry* 31,048 Merchant, agent, accountant, etc. 62,564
Earthenware & bricks 19,580 Messenger, porter, etc. 72,155
Leather & hair goods 26,737 Shopkeeper, salesmen, etc. 27,232
Metal & Machines 167,052
Oil, soap, etc. 12,188
Paper and publishing 42,578 Transportation services
Shipbuilding 14,498 Railway transport 10,699
Textiles 315,646 Road transport 40,106
Vehicles 9,021 Sea & canal transport 66,360
Wood & furniture 69,648

Food, etc. Others industries
Food processing 113,610 Construction 137,056
Spiritous drinks, etc. 8,179 Mining 18,413
Tobacconists* 3,298 Water & gas services 3,914

Industries marked with a * are available in the database but are not used in the baseline analysis
because they cannot be linked to categories in the 1907 British input-output table.
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Table 6: Summary statistics for the cross-industry spillover terms

Main analysis matrices and industry categories
Obs. Mean SD Min Max

4 ln(Lict+1) 4,253 0.20 0.38 -5.42 3.57
ln(Lict+1) 4,253 6.51 1.94 0.00 13.01∑
k 6=i IOinki ln(Lkct) 4,253 7.94 2.45 2.06 19.60∑
k 6=i IOoutki ln(Lkct) 4,253 7.70 5.98 0.00 42.77∑
k 6=iEMPki ln(Lkct) 4,253 99.71 42.21 -91.74 190.24∑
k 6=iOCCki ln(Lkct) 4,253 36.00 25.47 -1.10 110.35

Alternative 1841 IO matrix with aggregated industries
Obs. Mean SD Min Max

4 ln(Lict+1) 2,222 0.20 0.34 -3.31 3.57
ln(Lict+1) 2,222 7.34 1.89 1.79 13.44∑
k 6=i IOin1841ki ln(Lkct) 2,222 2.72 2.79 0.00 12.10∑
k 6=i IOout1841ki ln(Lkct) 2,222 3.94 3.88 0.00 11.76∑
k 6=iEMPki ln(Lkct) 2,222 49.39 24.75 -29.16 95.01∑
k 6=iOCCki ln(Lkct) 2,222 24.83 16.46 -0.66 66.92

Note: We report cross-city summary statistics for 1861-1911 because we only report in-
strumented cross-city regression results in the main text, which means that 1851 is used
only to construct lagged values. For the others, we report summary statistics using the full
1851-1911 period since we report both OLS and instrumented results.

It is also useful to look at the correlation between the cross-industry terms included in

Eq. 9. These correlations are described in Table 7 below for the set of cross-industry

terms used in the main analysis. In general we can see that the correlations between

these variables are not too high, with the greatest correlation showing up between

the IOin and IOout terms.

Table 7: Correlations between cross-industry terms used in the main analysis

IOin IOout EMP OCC
IOin 1.0000
IOout 0.5478 1.0000
EMP 0.1218 0.1789 1.0000
OCC 0.0741 -0.1783 0.3035 1.0000
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10.3 Preliminary results appendix

This appendix presents some preliminary analyses, starting with results obtained

when using the industry agglomeration index from Ellison & Glaeser (1997). Table

8 presents agglomeration patterns using all cities, while Table 9 presents alternative

results obtained while excluding London.

Table 8: Industry agglomeration patterns based on the Ellison & Glaeser index

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
This may introduce bias for some industries, such as shipbuilding, where evidence suggests that the
average size of firms increased substantially over the study period. Some analysis industries are not
included in this table due to lack of firm size data.
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Table 9: Industry agglomeration patterns excluding London

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
Some analysis industries are not included in this table due to lack of firm size data.

Next, we consider results from long-difference regressions following Glaeser et al.

(1992) and Henderson et al. (1995). Table 10 presents results obtained using the

approach from Glaeser et al. (1992). We cannot perfectly match their specification

because we lack systematic wage data as well as information about firm sizes within

each city-industry. However, where we do have data the variables presented in Table

10 are constructed to mirror those presented in Table 3 of Glaeser et al. (1992).
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These results are estimated for all industries in our data as well as for manufacturing

industries only, which drops the service, transportation and construction sectors.

The results in Table 10 indicate that city-industries grew more slowly in locations

in which they were initially large or made up an unusually large share of local em-

ployment. These patterns are similar to those obtained in Glaeser et al. (1992). As

in their study, we find that national industry growth is a strong predictor of local

industry growth. We find mixed evidence on whether the share of employment in the

five other largest industries in a location positively impacts city-industry employment

growth. These vary substantially depending on whether we include all industries or

focus only on manufacturing industries.44

Next, we consider results from long-difference regressions following the approach

from Table 1 of Henderson et al. (1995). These results, in Table 11, provide some

evidence that industries grew more slowly in locations in which they were initially

more concentrated. This is the opposite of the finding obtained by Henderson et al.

(1995). We find mixed evidence on whether local diversity increased industry growth,

though the effects tend to be positive and statistically significant when focusing only

on manufacturing industries. Overall, our results appear to be more in-line with

the findings of Glaeser et al. (1992), which suggest that spillovers occur primarily

between, rather than within industries.

44Many of the top-5 industries in each city are not manufacturing, so limiting to manufacturing
substantially changes the share of the top-5 industries.
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Table 10: Long-difference regression results following Glaeser et al. (1992)

DV: Ln(City-industry emp. in final year/City-industry emp. in initial year)
Years: 1851-1911 1851-1881 1881-1911
Industries All ind. Manuf. All ind. Manuf. All ind. Manuf.

(1) (2) (3) (4) (5) (6)
Ln(Industry emp. in all 1.099*** 1.099*** 1.060*** 1.045*** 0.997*** 0.986***
cities in final year / (0.0528) (0.0686) (0.0544) (0.0947) (0.0603) (0.0587)
Industry emp. in all
cities in initial year)

Employment in the -2.965* -0.341 -0.926 0.367 -1.348** -0.703*
city-industry in (1.556) (1.586) (0.766) (1.026) (0.623) (0.419)
the initial year (mil)

City-ind shr. of city -0.109** -0.0289 -0.0531** -0.00472 -0.0492** -0.0353*
emp. relative to (0.0481) (0.0374) (0.0241) (0.0170) (0.0245) (0.0214)
industry’s share of
emp. in all cities
in initial year

Cities’ other top-5 -0.143 1.079*** 0.192 0.837*** -0.221 0.217*
industry share of (0.319) (0.230) (0.206) (0.154) (0.209) (0.120)
city employment in
initial year

Constant 0.277 -0.472*** -0.0255 -0.347*** 0.281* 0.0103
(0.267) (0.161) (0.163) (0.0999) (0.155) (0.0767)

Observations 802 461 804 463 804 804

Results obtained from long-difference regressions with robust standard errors. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.
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Table 11: Long-difference regression results following Henderson et al. (1995)

DV: Ln(City-industry emp. in final year)
Years: 1851-1911 1851-1881 1881-1911
Industries All Manuf. All Manuf. All Manuf.

ind. only ind. only ind. only
(1) (2) (3) (4) (5) (6)

Ln(City-industry emp. 0.828*** 0.852*** 0.896*** 0.894*** 0.965*** 0.978***
in initial year) (0.0252) (0.0324) (0.0171) (0.0220) (0.0159) (0.0201)

Concentration in -0.465 -0.216 -0.0381 0.196 -0.839*** -0.634**
initial year: (0.351) (0.400) (0.247) (0.288) (0.223) (0.262)
city-industry share
of city employment

Lack of diversity: -0.00466 1.110*** 0.0875 0.759*** 0.0195 0.465*
HHI in initial year (0.315) (0.357) (0.212) (0.223) (0.239) (0.279)

Constant 2.313*** 1.844*** 1.252*** 1.064*** 0.878*** 0.679***
(0.180) (0.212) (0.116) (0.137) (0.130) (0.149)

Observations 802 461 804 463 804 463

Results obtained from long-difference regressions with robust standard errors. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.

10.4 Empirical approach appendix

10.4.1 Monte Carlo simulations

We use Monte Carlo simulations to assess how well our estimation strategy performs

in datasets displaying the size and characteristics of our data. The basic idea is to

generate datasets that mimic our real data, but obtained from a data generating pro-

cess (DGP) with known parameter values. We then apply our estimation strategy to

these placebo data sets, recover parameter estimates, and compare them to the esti-

mates obtained in the true data. This allows us to assess the ability of our estimation

strategy to obtain unbiased results and accurate confidence intervals.

We begin by estimating our baseline regression specification, Eq. 9, in order

to obtain a set of industry-year effects (φ̂it), city-year (θ̂ct) effects, and estimated

residuals ε̂cit. These ingredients will be used to simulate new datasets in which the

city-year and industry-year effects are held constant at the estimated values, and the

error terms are drawn from a multivariate Normal distribution whose parameters are
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computed using the estimated residuals.

Step 1 – constructing the simulated error term

We want to generate a simulated error vector that displays correlation within the

city-year (CY), industry-year (IY) and city-industry (CI) dimensions but is uncor-

related across these dimensions. In other words, we need to draw entire vectors of

errors εcit from a multivariate distribution whose covariance matrix Ω has zeros if two

observations do not share any cluster, and non-zeros if they share at least a cluster.

We follow Cameron et al. (2011) and construct such multi-clustered covariance matrix

Ω as the sum of four single-clustered covariance matrices.45

Ω = ΩCY + ΩIY + ΩCI − 2ΩCIT

Notice that if we sort the observations by a given dimension of clustering x,

Ωx has a block diagonal structure. For example, ΩCY consists of blocks of zeros

if the corresponding observations are not in the same city-year cluster, and blocks

along the diagonal with elements potentially different from zero if the corresponding

observations are from the same city-year pair. We denoted these non-zero submatrices

by WCY and assume that they are identical across clusters. Therefore the typical

element of WCY is σij = cov(εc̄it̄, εc̄jt̄) 6= 0.

We use the estimated residuals ε̂cit from the baseline specification to construct

the elements of each submatrix W x. For instance, taking any two industries i and

j, we set σ̂ij = 1
#CY

∑
CY ε̂citε̂cjt, where #CY is the number of different city-year

pairs. We compute the elements of ΩIY and ΩCI in the same way. We take a different

approach to compute the elements of ΩCIY since each cluster has only one observation,

i.e. there’s a single observation for each triplet city-industry-year. All the diagonal

elements of ΩCIY are set to the mean squared residual, i.e. σ̂cit = σ̂ = 1
N

∑
CIY ε̂

2
cit,

where N is the number of observations. The off-diagonal elements of ΩCIY are zeros.46

45Following Cameron et al. (2011)’s notation, with three non-nested dimensions of clustering
(denoted by A,B,C) the correct formula to compute a multi-clustered covariance matrix is ΩABC =
ΩA+ΩB+ΩC−ΩA∩C−ΩA∩B−ΩB∩C +ΩA∩B∩C where, for instance, the entries of ΩA are non-zero
if two observations share the same cluster along a single dimension A, while the entries of ΩA∩B

are non-zero if two observations share the same cluster defined by the intersection of A and B. In
our application, notice that ΩCY ∩IY = ΩCY ∩CI = ΩIY ∩CI = ΩCIT , therefore the formula above
collapses to four distinct terms only.

46As noted in Cameron et al. (2011), multi-clustered covariance matrices are not guaranteed to be
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We draw 500 vectors of error terms from the multivariate distribution N(0,Ω)

and rescale each vector so that it has exactly the same mean (zero) and variance as

the original residuals. The result of this procedure is a simulated error term ε̃SIM

that displays correlated errors along the city-year, industry-year and city-industry

dimensions with a variance matching that of the original estimated error term.

Part 2: Simulating the data

The next step in our procedure involves simulating a new set of data with the same

dimensions as the original data and with known within-industry and cross-industry

spillover parameters.

In order to generate a simulated growth rate for the first period we begin with the

level of initial city-industry employment from the data and use Eq. 9 to compute a

simulated employment growth rate for each city-industry. So, for example, if we let

β1 = 0.05 and all other β terms and τii terms to zero then growth rate of employment

in city c and industry i is:

g̃ic1 = 0.05
∑
k 6=i

IOinki ln(Lkc0) + φ̂i1 + θ̂c1 + ε̃CY−IY−CIic1 (17)

where IOinki is the actual input-output weight observed in the data. The shifters

φ̂it and θ̂ct are kept constant across simulations at the values estimated in the initial

regression.

We use this simulated growth rate to obtain Lkc1, the level of city-industry em-

ployment in the following period, which is then fed back into Eq. 17 to obtain Lkc2,

and so on. We repeat the process until we generate a level of employment for each

city-industry-year triplet observed in the data. This procedure delivers a simulated

dataset that by construction has the desired clustered error structure and the same

number of observations as the original data.

Step 3: Results

We follow this procedure to generate 500 datasets that look like the true data, but

that are generated using a data generating process with known τii and β parameters.

positive semidefinite. When that happens, as in our case, such Ω cannot be used by a random number
generator. Our solution is to replace Ω with the nearest positive semidefinite matrix computed using
Matlab routine nearestSPD.
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Specifically, for the plots below we set all of the τii and β parameters to zero (though

we have also explored alternative non-zero values). We apply our estimation strategy

(as in Table 1 Column 6) to each of the simulated data sets and obtain a distribution

of estimated τ and β parameters.

Figure 4 displays the mean, 90% and 95% confidence intervals for the distribution

of estimated parameters when the true underlying spillover parameters are set to

zero. We can see that our estimators are unbiased. Similar unbiased patterns appear

when we use alternative non-zero parameters for either the within or cross-industry

spillover terms.

We can compare the distribution of estimated coefficients coming out of this coun-

terfactual DGP with the estimates obtained using the real dataset. This allows us to

asses the likelihood of observing the real dataset and the corresponding estimates un-

der the null hypothesis that all parameters are zeros. This method provides us with an

alternative way to do hypothesis testing that does not rely on our multi-dimensional

clustered standard errors.

Figure 5 plots the distribution of estimated IOin parameters obtained using the

500 simulated data sets, as well as the estimate obtained from the true data. These

results suggests that obtaining the point estimate for IOin of 0.0587 that we got from

the true data (Table 1, Column 6) is extremely unlikely when the true parameter value

is zero. The implied p-value is 0.00 and the coefficient is significantly different from

zero at the 1% level.

Table 12 presents the similar results for all the other coefficients of interest and

confirms the significance levels of our baseline results from Column 6 of Table 1. This

is reassuring because one may wonder whether our dataset is sufficiently large to con-

sistently estimate all the parameters of interest, especially given that the observations

are potentially correlated across multiple dimensions.

Discussion

These monte carlo results can help us assess how well our approach performs on

simulated data sets sharing the same size and variance as the data used in our main

analysis. However, this procedure comes with obvious limitations. In particular,

we are assuming that the model is correctly specified and that the error terms are

clustered in a particular way. Thus, this simulation cannot be used to assess how well

our procedure performs under alternative data generating processes or when standard
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errors display alternative clustering patterns.

Figure 4: Estimates and C.I.s from simulated results when all spillover parameters
are zero
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Table 12: Simulated results with all parameters are set to zero vs. parameter esti-
mates from true data

Simulated Data True Data
Variable Mean Std. Dev. Coef. p-value
EMP 0 .001 .002 .213
IOin .001 .016 .059 0.00
IOout .001 .012 -.019 .11
OCC 0 .002 .006 .014
wtn1 -.002 .018 -.083 0.00
wtn2 -.001 .037 -.006 .865
wtn3 -.003 .022 -.038 .083
wtn4 0 .019 -.083 0.00
wtn5 -.002 .022 -.035 .117
wtn6 -.005 .035 -.052 .137
wtn7 0 .024 -.038 .114
wtn8 0 .018 .002 .892
wtn9 0 .023 -.05 .031
wtn10 -.001 .02 -.126 0.00
wtn11 -.001 .02 .04 .049
wtn12 .001 .025 -.034 .163
wtn13 -.003 .022 -.083 0.00
wtn14 -.004 .028 -.104 0.00
wtn15 -.002 .023 -.043 .066
wtn16 -.002 .026 -.075 .004
wtn17 -.002 .021 -.069 .001
wtn18 0 .015 -.035 .024
wtn19 -.002 .018 -.034 .067
wtn20 -.001 .02 -.036 .069
wtn21 -.001 .022 -.064 .004
wtn22 -.005 .031 -.145 0.00
wtn23 -.001 .019 -.053 .006

For each of the key explanatory variables, the first two columns of this table present the mean and
standard deviation of the distribution of coefficient estimates obtained from applying our estimation
strategy to 500 simulated datasets where the data have been generated with all spillover parameter
values set to zero. Column 3 presents the coefficients estimated using the true data (as in Table 1,
Column 6). Column 4 presents the p-value implied by comparing the coefficients estimated using
the true data to the distribution of coefficient estimates obtained from the simulated data.

57



10.4.2 KP test appendix

The standard errors in all of our main regressions are clustered along multiple dimen-

sions. When using 2sls regressions, it is useful to be able to calculate the Kleibergen

& Paap (2006) test statistics for under- and weak-identification using the appropri-

ately clustered covariance matrix. The KP statistics can easily be computed using

existing Stata routines, but only for up to two non-nested dimensions of clustering

(Kleibergen (2010)). None of these routines can handle a higher number of clusters so

we developed our own package, which we will make available to the benefit of other

researchers.

Our strategy builds on Thompson (2011) and Cameron et al. (2011) to compute

a multi-clustered covariance of the orthogonality condition for any number of clus-

ters. We then use a modified version of the Stata program ranktest to compute the

appropriate KP statistics based on this covariance matrix. It can be verified that our

program exactly reproduces the rk statistic (under-identification) and Wald statistic

computed by ranktest in the case of two clusters. The weak-identification test statis-

tic is then computed by transforming the Wald statistic into an F statistic. Notice

that the value of our F statistic does not exactly match the one computed by ivreg2

due to the very small differences in the small sample adjustment.

10.5 Results appendix

10.5.1 Results including only one spillover path at a time

Table 13 looks at results that include only one of these at a time. Columns 1-3 include

only the forward input-output linkages; Columns 1 presents OLS results; Column

2 presents results with lagged instrumentation on the within terms; and Column

3 uses lagged instrumentation for both the within and between terms. A similar

pattern is used for backward input-output linkages in Columns 4-6, the demographic-

based labor force similarity measure in Columns 7-9, and the occupation-based labor

force similarity measure in Columns 10-12. All of these results include a full set of

industry-specific within-industry terms, but these are not reported in Table 13 for

space reasons.
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Table 13: OLS and IV regressions including only one spillover path at a time

(1) (2) (3) (4) (5) (6)
Log employment in 0.1387*** 0.1136*** 0.1106***
local supplier (0.0376) (0.0400) (0.0391)
industries

Log employment in -0.0512 -0.0966 -0.1176*
local buyer (0.0657) (0.0652) (0.0652)
industries
Observations 4,253 3,539 3,539 4,253 3,539 3,539
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 21.02 28.13 17.87 18.1
KP weak id. 51.94 61.7 43.72 42.34

(7) (8) (9) (10) (11) (12)
Log employment in local 0.0748 0.1246** 0.0761
industries using (0.0704) (0.0625) (0.0617)
demographically
similar workers

Log employment in local 0.1502* 0.1804** 0.1715**
industries using (0.0782) (0.0829) (0.0826)
similar occupations
Observations 4,253 3,539 3,539 4,253 3,539 3,539
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 19.22 20.29 15.72 16.9
KP weak id. 47.61 44.15 37.7 31.96

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry connection
variables have been standardized for comparability. Heterogeneous within terms, city-time
and industry-time effects are included in all regressions but not displayed. 2SLS regressions
use lagged instruments. Note that the number of observations falls for the instrumented
regressions because the instruments require a lagged employment term. Thus, data from
1851 are not available for these regressions. Acronyms: wtn = within, btn = between. “KP
under id.” denotes the test statistic for the Lagrange Multiplier underidentification test
based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak
instruments test based on the Kleibergen-Paap Wald statistic.

10.5.2 Robustness of results to dropping cities or industries

Figure 6 presents histograms of t-statistics for each cross-industry term obtained

from running regressions equivalent to Column 6 of Table 1, where in each regression

a different city is dropped from the dataset. This allows us to assess the extent to

which our results are robust to changes in the set of cities included in the analysis.

These results indicate that our estimates are not sensitive to dropping individual

cities from the analysis database.
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Figure 6: Robustness to dropping one city at a time – distribution of t-statistics

IOin results IOout results

EMP results OCC results

Figure 7 presents histograms of t-statistics for each cross-industry term obtained

from running regressions equivalent to Column 6 of Table 1, where in each regression

a different industry is dropped from the dataset. This allows us to assess the extent

to which our results are robust to changes in the set of industries included in the

analysis. We can see that in general our estimated coefficients are not sensitive to

dropping individual industries. However, this does not apply when looking at the

IO out coefficient. The top-right graph shows that when we drop shipbuilding from

the data, the IO out coefficient changes substantially. In particular, the estimated

coefficient changes from negative and occasionally statistically significant to positive

and not statistically significant. This suggests that the negative coefficient estimated

on the IO out coefficient is driven entirely by the Shipbuilding industry. This is an

unusual industry because presumably it can only operate in coastal cities or those
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with access to a major navigable river. Thus, the IO out results obtained when

dropping this industry seem more reasonable. These results suggest that in general

the impact of local customers is weakly positive.

Overall, the results in Figure 7 indicate that our estimates are much more sen-

sitive to dropping industries than they are to dropping cities. This suggests that

heterogeneity across industries is more important than heterogeneity across cities.

Figure 7: Robustness to dropping one industry at a time – distribution of t-statistics

IOin results IOout results

EMP results OCC results

10.5.3 Heterogeneous effects

In this section we look at heterogeneity in the pattern of cross-industry and within-

industry effects across different industries. We begin by considering heterogeneous

cross-industry effects. Specifically, we run two alternative versions of Equation 9,
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4 ln(Lict+1) = τ̃ii ln(Lict) + βi
∑
k 6=i

CONNECTki ln(Lkct) + θct + χit + eict (18)

4 ln(Li 6=k ct+1) = τ̃ii ln(Lict) + βkCONNECTki ln(Lkct) + θct + χit + eict (19)

where CONNECTki is one of our four measures of cross-industry connections. Equa-

tion 18 allows us to estimate industry-specific coefficients βi describing how much

each industry i benefits from cross-industry connections. This specification can be

estimated using the same approach as was used for our baseline regressions. Us-

ing Equation 19, we estimate industry-specific coefficients βk that reflect the extent

to which industry k generates spillovers that benefit other industries. Estimating

this value requires a different approach to avoid conflating the within and between

impact of industry k when estimating βk. Specifically, we run separate regressions

corresponding to Equation 19 for each industry k. In each of these regressions, only

employment in industry k (interacted with a cross-industry connection measure) is

included as an explanatory variable and observations from industry k are not included

in the dependent variable.

Once the industry-specific βi and βk terms are estimated, we compare them to

available measures of industry characteristics: firm size in each industry, the share

of output exported, the share of output sold to households, the industry labor cost

share, and the industry intermediate cost share. In each case we run a simple uni-

variate regression where the dependent variable is the estimated industry-specific

cross-industry spillover coefficient and the independent variable is one of the industry

characteristics. Univariate regressions are used because we are working with a rela-

tively small number of observations. These results can provide suggestive evidence

about the characteristics of industries that produce or benefit from different types of

cross-industry spillovers, but because of the small sample size we will not be able to

draw any strong conclusions.

Table 14 describes the characteristics of industries that benefit from cross-industry

connections. In rows 1-2, we see evidence that small firm size in an industry is asso-

ciated with more cross-industry spillover benefits, but this pattern is not statistically

significant at standard confidence levels. The only strong result coming out of this
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table is that industries that benefit from connections to other local industries with

similar labor pools tend to have a larger labor cost share relative to overall industry

sales, as well as a smaller intermediate cost share. This result seems reasonable.

Table 14: Features of industries that benefit from each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific βi coefficient

Spillovers channel: Local Local Demographically Occupationally
suppliers buyers similar similar

labor pools labor pools
Average firm size -0.273 -1.100* -0.0303 -0.235

(0.330) (0.608) (0.0328) (0.945)

Median worker’s firm size -0.0217 -0.114 -0.00234 -0.0333
(0.0390) (0.0726) (0.00389) (0.111)

Share of industry output -0.0741 -0.0695 -0.0150 -0.157
exported abroad (0.104) (0.198) (0.0107) (0.284)

Share of industry output 0.0612 0.161 0.00689 0.0975
sold to households (0.0459) (0.0932) (0.00485) (0.128)

Labor cost/output ratio -0.101 -0.337 -0.0084 0.413**
(0.146) (0.274) (0.00993) (0.186)

Intermediate cost/output ratio 0.0092 0.143 -0.00059 -0.364***
(0.107) (0.195) (0.00733) (0.122)

Estimated coefficients from univariate regressions. Standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1. The dependent variable in each regression is the estimated βi coefficient
from Eq. 18. Firm size data comes from the 1851 Census of Population. The share of industry
output exported or sold to households is from the 1907 input-output table. The labor cost share
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate
cost share is based on the 1907 input-output table. We do not report robust standard errors
because these generate smaller confidence intervals, probably due to small-sample bias. We have
also explored regressions in which we weight results by the inverse of the standard error of each
estimated within-industry coefficient in order to account for the precision of those estimates and
these deliver similar results.

Table 15 describes the characteristics of industries that produce cross-industry

connections. These results also suggest that industries with smaller firm sizes produce

more beneficial cross-industry spillovers, but again, these results are not statistically

significant. As before, we observe is that industries with smaller intermediate cost

share relative to overall sales produce fewer cross-industry benefits to occupationally

similar industries. There is some evidence that this may be linked to the importance

of labor in firm inputs.
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Table 15: Features of industries that produce each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific βk coefficient

Spillovers channel: Local Local Demographically Occupationally
suppliers buyers similar similar

labor pools labor pools
Average firm size -1.250 -3.125 0.00417 -1.809

(1.060) (6.269) (0.180) (2.048)

Median worker’s firm size -0.140 -0.543 -0.00288 -0.189
(0.125) (0.731) (0.0211) (0.242)

Share of industry output -0.0495 -0.808 -0.0121 -0.550
exported abroad (0.349) (1.934) (0.0556) (0.623)

Share of industry output 0.0013 0.0045 -0.0119 0.483*
sold to households (0.175) (0.879) (0.0250) (0.266)

Labor cost/output ratio 0.0154 1.224 -0.0296 0.494
(0.547) (3.101) (0.0505) (0.341)

Intermediate cost/output ratio -0.305 -0.314 0.0176 -0.493**
(0.354) (2.191) (0.0356) (0.219)

Estimated coefficients from univariate regressions. The dependent variable in each regression is
the estimated βk coefficient from Eq. 19. Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1. Firm size data comes from the 1851 Census of Population. The share of industry
output exported or sold to households is from the 1907 input-output table. The labor cost share
is constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate
cost share is based on the 1907 input-output table. We do not report robust standard errors
because these generate smaller confidence intervals, probably due to small-sample bias. We have
also explored regressions in which we weight results by the inverse of the standard error of each
estimated within-industry coefficient in order to account for the precision of those estimates and
these deliver similar results.

Next, we undertake a similar exercise with our estimated within-industry coeffi-

cients. In Table 16 we consider some of the industry characteristics that may be re-

lated to the range of different within-industry spillover estimates we observe. Columns

1-2 focus on the role of firm size using two different measures. We observe a posi-

tive relationship between firm size in an industry and the strength of within-industry

spillovers, but this results is not statistically significant due to the small number of

available observations. There is also weak evidence that more labor intensive indus-

tries benefit more from within-industry spillovers.
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Table 16: Features of industries that benefit from within-industry spillovers

DV: Estimated industry-specific within-industry spillover coefficients
Average firm size 0.172

(0.198)
Median worker’s firm size 0.0176

(0.0233)
Exports share of industry output -0.0313

(0.0705)
Households share of industry output -0.0247

(0.0307)
Labor cost/output ratio 0.0699

(0.0875)
Intermediate cost/output ratio -0.0304

(0.0663)
Observations 20 20 20 20 15 15
R-squared 0.040 0.031 0.011 0.035 0.047 0.016

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations varies because the
explanatory variables are drawn from different sources and are not available for all industries. The within coefficients
come from the specification used in Column 6 of Table 1. Firm size data comes from the 1851 Census of Population.
The export’s and household’s share of industry output come from the input-output table. Total labor cost and
total output values come from the 1907 Census of Production. Intermediate cost is constructed based on data from
the 1907 Input-Output matrix. We do not report robust standard errors because these generate smaller confidence
intervals, probably due to small-sample bias. We have also explored regressions in which we weight results by the
inverse of the standard error of each estimated within-industry coefficient in order to account for the precision of
those estimates and these deliver similar results.

10.5.4 Robustness: Weighted by initial city-industry employment

Table 17 presents additional results in which each observation has been weighted by

initial city-industry employment. Weights for each observation are based on employ-

ment in the city-industry at the beginning of each period.47 The estimated results

on the IOin term in these weighted regressions is very similar to that found in the

unweighted regressions presented in the main text. A difference between the weighted

and unweighted results appears for the IOout term, which appears to be more nega-

tive in the weighted results. However, this coefficient continues to be highly sensitive

to the set of industries included in the analysis, so we do not interpret this as a strong

result. Another difference is that the agglomeration benefits between industries using

similar occupation disappears when looking at weighted regressions. This suggests

that labor market pooling benefits may be larger when the local size of an industry

is small.

47This weighting approach is slightly different than the approach used in some previous drafts of
this paper. In previous drafts we often weighted all observations by city-industry employment in
1851. In this draft we allow the weights to adjust over time as cities and industries grow. We believe
that this is a better approach because it does not over-weight the industries or cities which were
large in 1851 but were much less important 60 years later.
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Table 17: Weighted regression results

(1) (2) (3) (4) (5) (6)
Log employment 0.0522** 0.0644*** 0.0685*** 0.1266*** 0.1202*** 0.1367***
in local supplier (0.0206) (0.0221) (0.0240) (0.0350) (0.0337) (0.0381)
industries

Log employment -0.0793*** -0.0938*** -0.0979*** -0.1979*** -0.2178*** -0.2392***
in local buyer (0.0264) (0.0275) (0.0282) (0.0537) (0.0498) (0.0481)
industries

Log emp. in local -0.0045 -0.0048 -0.0041 0.0070 0.0237 0.0206
industries using (0.0119) (0.0128) (0.0134) (0.0384) (0.0368) (0.0389)
demographically
similar workers

Log emp. in local -0.0073 0.0032 0.0038 -0.0490 -0.0296 -0.0336
industries using (0.0177) (0.0191) (0.0194) (0.0476) (0.0518) (0.0523)
similar occupations

Log own-industry -0.0311* -0.0284 -0.0293
employment (0.0175) (0.0197) (0.0196)
Observations 4,253 3,544 3,539 4,253 3,539 3,539
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
wtn homog homog homog heter heter heter
KP under 24.86 25.45 22.09 24.52
KP weak id. 4677.9 858.61 52.36 35.68

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry con-
nection variables have been standardized for comparability. Heterogeneous regressors within are
included in Columns 4-6 but not displayed. City-year and industry-year effects are included in all
regressions but not displayed. 2SLS regressions use lagged instruments. Note that the number of
observations falls for the instrumented regressions in columns 3-6 because the instruments require a
lagged employment term. Thus, data from 1851 are not available for these regressions. Acronyms:
wtn = within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Mul-
tiplier underidentification test based on Kleibergen & Paap (2006). “KP weak id.” denotes the
test statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic. Weights
for each city-industry observation are based on employment in the city-industry at the beginning
of each period.

10.5.5 Robustness: Alternative difference lengths

While the main results are generated using city-industry growth over one-decade

differences, it is also possible to consider results using longer differences. In this

section we present results where the outcome variable is differenced over two or three

decades. As in the main results, when using instruments those are based on a one-

decade lag. In order to take advantage of as much of the data as possible, we use all
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differences of two or three decades available in the data.48

Results obtained when using two-decade differences are presented in Table 18,

while those using three-decade differences are in Table 19. These results show that

using two or three decade differences yields results that are quite similar to what we

obtain using one-decade differences in the main text. Note that the magnitude of

the estimated coefficients changes as we move to larger differences, as expected, since

more city-industry growth will occur over a longer time period.

Table 18: Regression results using growth over two-decade differences

(1) (2) (3) (4) (5) (6)

Log employment in 0.1230** 0.1351*** 0.1315*** 0.4374*** 0.4209*** 0.4297***
local supplier (0.0487) (0.0492) (0.0503) (0.0993) (0.1027) (0.1039)
industries

Log employment in 0.0655 0.0100 -0.0052 -0.0701 -0.1261 -0.1598
local buyer (0.0705) (0.0665) (0.0701) (0.1409) (0.1505) (0.1511)
industries

Log employment in local 0.0078 0.0158 0.0066 0.0758 0.1415 0.1025
industries using (0.0388) (0.0475) (0.0474) (0.1187) (0.1160) (0.1219)
demographically
similar workers

Log employment in local 0.1163 0.1249 0.1155 0.4753*** 0.4566*** 0.4432***
industries using (0.0742) (0.0795) (0.0800) (0.1504) (0.1653) (0.1700)
similar occupations

Log own-industry -0.1138** -0.0919** -0.0904*
employment (0.0445) (0.0466) (0.0473)
Observations 3,549 2,839 2,834 3,549 2,834 2,834
Estimation ols 2sls 2sls ols 2sls 2sls
instrumented none wtn wtn-btn none wtn wtn-btn
KP under 21 22.13 25.1 24.39
KP weak 4437.31 917.31 67.79 46.35
Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry connection variables have been
standardized for comparability. Heterogeneous regressors within are included in Columns 4-6 but not displayed.
City-time and industry-time effects are included in all regressions but not displayed. 2SLS regressions use lagged
instruments. Note that the number of observations falls for the instrumented regressions because the instruments
require a lagged employment term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn =
within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test based
on the Kleibergen-Paap Wald statistic.

48One advantage of this is that it avoids an arbitrary dependence on the initial year. To illustrate
this point, suppose we use non-overlapping two-decade differences starting in 1851 vs. starting in
1861. In that case those differences will use completely different data points which will depend
arbitrarily on the start date. By using overlapping differences we avoid this arbitrary element.
However, it does introduce serial correlation in our data, which will be addressed by the fact that
our standard errors allow serial correlation within city-industries across all periods.
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Table 19: Regression results using growth over three-decade differences

(1) (2) (3) (4) (5) (6)

Log employment in 0.2125*** 0.2366*** 0.2387*** 0.6364*** 0.6597*** 0.6699***
local supplier (0.0699) (0.0728) (0.0741) (0.1436) (0.1576) (0.1611)
industries

Log employment in 0.0470 -0.0092 -0.0469 -0.1396 -0.2486 -0.2864
local buyer (0.0976) (0.1116) (0.1118) (0.2017) (0.2294) (0.2383)
industries

Log employment in local 0.0131 0.0226 0.0170 0.0763 0.2338 0.2045
industries using (0.0594) (0.0727) (0.0720) (0.1601) (0.1599) (0.1646)
demographically
similar workers

Log employment in local 0.1888* 0.2117* 0.1938 0.6377*** 0.7300*** 0.7191***
industries using (0.1054) (0.1186) (0.1213) (0.1984) (0.2219) (0.2393)
similar occupations

Log own-industry -0.1689*** -0.1399* -0.1422*
employment (0.0649) (0.0752) (0.0759)
Observations 2,837 2,126 2,122 2,837 2,122 2,122
Estimation ols 2sls 2sls ols 2sls 2sls
instrumented none wtn wtn-btn none wtn wtn-btn
KP under 16.59 17.45 19.58 17.29
KP weak 3754.29 729.55 32.02 24.02
Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. Significance
levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry connection variables have been
standardized for comparability. Heterogeneous regressors within are included in Columns 4-6 but not displayed.
City-time and industry-time effects are included in all regressions but not displayed. 2SLS regressions use lagged
instruments. Note that the number of observations falls for the instrumented regressions because the instruments
require a lagged employment term. Thus, data from 1851 are not available for these regressions. Acronyms: wtn =
within, btn = between. “KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification
test based on Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test based
on the Kleibergen-Paap Wald statistic.

10.5.6 Robustness: Results before or after 1881

This appendix presents additional results using only data before or only data after

1881, the midpoint of our study. These additional results can provide some evidence

on how the agglomeration forces we identify were changing across the study period.

However, because each set of results is being generated using substantially fewer data

points, in general these findings will be weaker than our main results.

Table 20 presents results focusing on the 1851-1881 period only. While these

results are generated using a smaller sample, so they are often less statistically signif-

icant than our main results, they are generally qualitatively similar; we find evidence

of benefits from nearby supplier industries and some evidence of benefits from nearby

industries using occupationally similar workforces. In both cases these effects are
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somewhat weaker than those observed in our main results. The results in Table 21,

which are based on data from 1881-1911, also provide evidence that firms benefited

from nearby supplier industries or industries with occupationally similar workforces.

However, these results are substantially stronger, which provides some suggestive ev-

idence that the strength of these agglomeration channels was increasing. This may

indicate that these agglomeration forces became more important as development pro-

ceeded, or it may be due to the large number of new technologies, in areas such as

chemicals, steel and electronics, introduced in the 1881-1911 period, which is often

described as the Second Industrial Revolution.

Table 20: Regression results using only data from 1851-1881

(1) (2) (3) (4) (5) (6)

Log employment in 0.0692** 0.0573*** 0.0183 0.2117*** 0.1064 0.0789
local supplier (0.0299) (0.0218) (0.0237) (0.0708) (0.0705) (0.0688)
industries

Log employment in 0.0571* 0.0141 0.0439 0.0675 -0.0031 0.0028
local buyer (0.0303) (0.0349) (0.0345) (0.0888) (0.1069) (0.1040)
industries

Log employment in local 0.0050 -0.0126 -0.0327 -0.0601 0.0730 0.0155
industries using (0.0312) (0.0371) (0.0369) (0.0908) (0.0802) (0.0831)
demographically
similar workers

Log employment in local 0.0528 0.0178 0.0057 0.1826* 0.0661 0.0396
industries using (0.0390) (0.0360) (0.0338) (0.1047) (0.1268) (0.1212)
similar occupations

Log own-industry -0.0998*** -0.0700** -0.0616*
employment (0.0285) (0.0285) (0.0316)
Observations 2,131 1,422 1,418 2,131 1,418 1,418
Estimation ols 2sls 2sls ols 2sls 2sls
instrumented none wtn wtn-btn none wtn wtn-btn
KP under 11.58 12.16 6.23 8.31
KP weak 1971.5 374.93 9.71 8.68
Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. Signifi-
cance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry connection variables
have been standardized for comparability. Heterogeneous regressors within are included in Columns 4-6 but
not displayed. City-time and industry-time effects are included in all regressions but not displayed. 2SLS
regressions use lagged instruments. Note that the number of observations falls for the instrumented regres-
sions because the instruments require a lagged employment term. Thus, data from 1851 are not available
for these regressions. Acronyms: wtn = within, btn = between. “KP under id.” denotes the test statistic
for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP weak id.”
denotes the test statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic.
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Table 21: Regression results using only data from 1881-1911

(1) (2) (3) (4) (5) (6)

Log employment in 0.0777 0.0627 0.0727 0.2045*** 0.2225*** 0.2376***
local supplier (0.0475) (0.0598) (0.0512) (0.0596) (0.0731) (0.0654)
industries

Log employment in 0.0305 -0.0229 -0.0648* -0.0926 -0.1176 -0.1612
local buyer (0.0618) (0.0487) (0.0351) (0.0876) (0.1067) (0.1174)
industries

Log employment in local 0.0102 0.0302 0.0121 0.1415* 0.1473 0.0726
industries using (0.0280) (0.0398) (0.0392) (0.0853) (0.1032) (0.0978)
demographically
similar workers

Log employment in local 0.1000 0.0524 0.0415 0.2604** 0.2696** 0.2298*
industries using (0.0700) (0.0822) (0.0840) (0.1132) (0.1271) (0.1372)
similar occupations

Log own-industry -0.0744 -0.0471 -0.0501
employment (0.0545) (0.0507) (0.0506)
Observations 2,122 1,410 1,409 2,122 1,409 1,409
Estimation ols 2sls 2sls ols 2sls 2sls
instrumented none wtn wtn-btn none wtn wtn-btn
KP under 11.31 12.07 3.69 4.56
KP weak 1359.24 227.75 5.15 4.34
Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. Signifi-
cance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry connection variables
have been standardized for comparability. Heterogeneous regressors within are included in Columns 4-6 but
not displayed. City-time and industry-time effects are included in all regressions but not displayed. 2SLS
regressions use lagged instruments. Note that the number of observations falls for the instrumented regres-
sions because the instruments require a lagged employment term. Thus, data from 1851 are not available
for these regressions. Acronyms: wtn = within, btn = between. “KP under id.” denotes the test statistic
for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP weak id.”
denotes the test statistic for a weak instruments test based on the Kleibergen-Paap Wald statistic.

10.5.7 Robustness: Alternative connections matrices

Next, we revisit the analysis using some alternative measures of inter-industry con-

nections. In particular, we use an alternative matrix of input-output connections

constructed by Horrell et al. (1994) for Britain in 1841. Generating results with

this alternative matrix, which comes from before the study period, can help address

concerns that the results we find are dependent on the specific set of matrices we

consider or are due to a process of endogenous inter-industry connection formation.

The cost of using this matrix is that we are forced to work with a smaller set of 12

more aggregated industry categories.49

49The industry categories are: “Mining & quarrying,” “Food, drink & tobacco”, “Metals & Ma-
chinery,” “Oils, chemicals & drugs,” “Textiles, clothing & leather goods,” “Earthenware & bricks,”
“Other manufactured goods,” “Construction,” “Gas & water,” “Transportation,” “Distribution,”
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Because we are now working with a smaller number of industry categories, we focus

on regressions that incorporate one spillover channel at a time. Table 22 describes the

results. As in the main results, we observe positive effects occurring through the local

supplier channel and these results are generally statistically significant. There is also

evidence that industries benefited from the presence of local buyers, but this result is

clearly sensitive to the underlying set of industries used, so it should be interpreted

with some caution. There is also some evidence of benefits through the presence of

occupationally similar local industries.

Table 22: Alternative matrix regressions

(1) (2) (3) (4) (5) (6)
Log employment in 0.0681* 0.0549 0.0732*
local supplier (0.0355) (0.0379) (0.0421)
industries
(1841 IO matrix)

Log employment in 0.2319** 0.2269** 0.2545***
local buyer (0.1168) (0.0993) (0.0969)
industries
(1841 IO matrix)
Observations 2,222 1,850 1,850 2,222 1,850 1,850
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 14.92 17.16 12.81 14.88
KP weak id. 49.14 22.63 35.55 33.17

(7) (8) (9) (10) (11) (12)
Log employment in local 0.1228 0.1609* 0.1098
industries using (0.0824) (0.0926) (0.0675)
demographically
similar workers

Log employment in local 0.0342 0.1285 0.1047
industries using (0.1233) (0.1018) (0.1020)
similar occupations
Observations 2,222 1,850 1,850 2,222 1,850 1,850
Estimation ols 2sls 2sls ols 2sls 2sls
Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 12.86 13.96 6.43 16.71
KP weak id. 42.89 39.48 19.94 61.55

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. ***
p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-industry connection variables have been stan-
dardized for comparability. A full set of within regressors, city-time and industry-time effects are included
in all regressions but not displayed. 2SLS regressions use lagged instruments. Note that the number of ob-
servations falls for the instrumented regressions because the instruments require a lagged employment term.
Thus, data from 1851 are not available for these regressions. Acronyms: wtn = within, btn = between.
“KP under id.” denotes the test statistic for the Lagrange Multiplier underidentification test based on
Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test based on
the Kleibergen-Paap Wald statistic.

and “All other services.”

71



10.5.8 Robustness: Cross-city effects

There is substantial variation in the proximity of cities in our database to other nearby

cities. Some cities, particularly those in Lancashire, West Yorkshire, and the North

Midlands, are located in close proximity to a number of other nearby cities. Others,

such as Norwich, Hull, and Portsmouth are relatively more isolated. In this section,

we extend our analysis to consider the possibility that city-industry growth may also

be affected by forces due to other nearby cities.

We consider two potential channels for cross-city effects. First, industries may

benefit from proximity to consumers in nearby cities. This market potential effect has

been suggested by Hanson (2005), who finds that regional demand linkages play an

important role in generating spatial agglomeration using modern U.S. data. Second,

industries may benefit from spillovers from other industries in nearby towns, through

any of the channels that we have identified. We analyze these effects using the more

detailed industry categories from Section 7.

We begin our analysis by collecting data on the distance (as the crow flies) between

each of the cities in our database, which we call distanceij. Using these, we construct

a measure for the remoteness of one city from another dij = exp(−distanceij).50 Our

measures of market potential for each city is then,

MPct = ln

∑
j 6=c

POPjt ∗ dcj

 ,

where POPjt is the population of city j. This differs slightly from Hanson’s approach,

which uses income in a city instead of population, due to the fact that income at the

city level is not available for the period we study.

We also want to measure the potential for cross-industry spillovers occurring across

cities. We measure proximity to an industry i in other cities as the distance-weighted

sum of log employment in that industry across all other cities. Our full regression

specification, including both cross-city market potential and spillover effects, is then,

4 ln(Lict+1) = τ̃ii ln(Lict)

50This distance weighting measure is motivated by Hanson (2005). We have also explored using
dij = 1/distanceij as the distance weighting measure and this delivers similar results.
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+ β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct)

+ β5

∑
k 6=i

IOinki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β6

∑
k 6=i

IOoutki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β7

∑
k 6=i

EMPki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β8

∑
k 6=i

OCCki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β9MPct + log(WORKpopct) + θc + χit + εict.

One difference between this and our baseline specification is that we now include

city fixed effects (θc) in place of city-year effects because city-year effects would be

perfectly correlated with the market potential measure. To help deal with city-size

effects, we also include the log of WORKpopct, the working population of city c in

period t.

The results generated using this specification are shown in Table 23. The first

thing to take away from this table is that our baseline results are essentially unchanged

when we include the additional cross-city terms. The city employment term in the

fifth column reflects the negative growth impact of city size. The coefficients on

the market potential measure is always positive but not statistically significant. The

results do not provide statistically significant evidence that cross-city spillovers matter

through any of the channels that we measure. However, these results are imprecisely

measured so we would not rule out a role for cross-city spillovers based only on these

estimates.

As a simpler alternative to the approach shown in Table 23, where we assume that

the effect of distance falls off in a continuous way, in Table 24 we consider cross-city

effects using a sharp cutoff at 50km. This reflects the possibility that it may be that

only nearby areas affect city growth. The cutoff of 50km is chosen because it results

in reasonable groupings of cities into regional economies. For example, nearly all of

the cotton towns of the Northwest region are within 50km of each other. Overall

these results look similar to those shown in Table 23 except that we now observe

that employment in other nearby cities is negatively related to city-industry growth.

This may be due in part to the heavily export-oriented nature of the British economy
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during this period. Also, there is evidence that nearby cities generated substantial

negative externalities on public health through channels such as pollution (see, e.g.,

Beach & Hanlon (2016)).

Table 23: Regression results with cross-city variables and continuous distance effects

(1) (2) (3)
Log employment in 0.1245*** 0.1280*** 0.1241***
local supplier industries (0.0433) (0.0460) (0.0477)

Log employment in -0.1473** -0.1527** -0.1561**
local buyer industries (0.0727) (0.0725) (0.0725)

Log employment in local industries -0.1071 -0.1193 -0.1225
using demographically similar workers (0.0797) (0.0827) (0.0834)

Log employment in local industries 0.1484* 0.1261 0.1247
using similar occupations (0.0885) (0.0890) (0.0888)

Log city employment -0.3193*** -0.2984*** -0.3028***
(0.0783) (0.0759) (0.0782)

Market Potential: Employment in 0.0513 0.0388
nearby cities weighted by distance (0.0519) (0.0752)

Log employment in supplier -0.0093 -0.0608
industries in nearby cities (0.1174) (0.1403)
weighted by distance

Log employment in buyer -0.1599 -0.1429
industries in nearby cities (0.1624) (0.1649)
weighted by distance

Log employment in industries using 0.1764 0.1392
demographically similar workers in nearby (0.1206) (0.1370)
cities weighted by distance

Log employment in industries using 0.0687 0.0572
similar occupations in nearby (0.1239) (0.1303)
cities weighted by distance
Observations 3,549 3,549 3,549
KP under 19.04 20.66 19.07
KP weak 2.02 2.3 2.02

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-
industry connection variables, including those for nearby cities, have been standardized
for comparability. A full set of within regressors, city-time and industry-time effects are
included in all regressions but not displayed. All regressions instrument the within and
between regressors with lagged instruments. Acronyms: wtn = within, btn = between.
“KP under” denotes the test statistic for the Lagrange Multiplier underidentification test
based on Kleibergen & Paap (2006). “KP weak” denotes the test statistic for a weak in-
struments test based on the Kleibergen-Paap Wald statistic.

74



Table 24: Regression results with cross-city variables reflecting employment within
50 km

(1) (2) (3)
Log employment in 0.1227*** 0.1397*** 0.1340***
local supplier industries (0.0428) (0.0444) (0.0441)

Log employment in -0.1290* -0.1597** -0.1388*
local buyer industries (0.0718) (0.0702) (0.0719)

Log employment in local industries -0.0241 -0.0983 -0.0392
using demographically similar workers (0.0681) (0.0773) (0.0719)

Log employment in local industries 0.1802** 0.1556* 0.1772**
using similar occupations (0.0837) (0.0853) (0.0822)

Log city employment -0.2819*** -0.2879*** -0.2714***
(0.0719) (0.0723) (0.0711)

Market potential: employment -0.1783** -0.1699**
in cities within 50km (millions) (0.0755) (0.0786)

Log employment in supplier -0.0735** -0.0433
industries in nearby cities (0.0345) (0.0362)
weighted by distance

Log employment in buyer 0.0244* 0.0196
industries in nearby cities (0.0131) (0.0133)
weighted by distance

Log employment in industries using -0.0049 0.0069
demographically similar workers in nearby (0.0294) (0.0266)
cities weighted by distance

Log employment in industries using 0.0006 0.0010
similar occupations in nearby (0.0219) (0.0214)
cities weighted by distance
Observations 3,549 3,549 3,549
KP under 19.57 19.14 19.55
KP weak 2.78 2.56 2.75

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. All cross-industry and within-
industry connection variables, including those for nearby cities, have been standardized
for comparability. A full set of within regressors, city-time and industry-time effects are
included in all regressions but not displayed. All regressions instrument the within and
between regressors with lagged instruments. Acronyms: wtn = within, btn = between.
“KP under” denotes the test statistic for the Lagrange Multiplier underidentification test
based on Kleibergen & Paap (2006). “KP weak” denotes the test statistic for a weak in-
struments test based on the Kleibergen-Paap Wald statistic.
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